cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345592 Numbers that are the sum of nine fourth powers in eight or more ways.

Original entry on oeis.org

6804, 6869, 8019, 8084, 8259, 8324, 8499, 8564, 9044, 9124, 9219, 9234, 9284, 9299, 9364, 9429, 9474, 9494, 9539, 9604, 9669, 9749, 9779, 10148, 10259, 10293, 10339, 10388, 10453, 10514, 10579, 10628, 10644, 10709, 10754, 10789, 10819, 10884, 10949, 10964
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6869 is a term because 6869 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345840 Numbers that are the sum of eight fourth powers in exactly eight ways.

Original entry on oeis.org

13268, 14212, 14788, 15667, 16612, 16627, 16707, 16772, 16822, 16852, 16882, 16947, 17363, 17428, 17877, 18117, 18948, 19157, 19237, 19252, 19682, 19828, 20291, 20372, 20612, 20707, 20722, 20772, 20917, 20962, 21253, 21331, 21458, 21478, 21573, 21717, 21763
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345583 at term 4 because 15427 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 2^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 1^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4 = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 2^4 + 2^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 7^4 + 10^4 = 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 10^4 = 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 7^4 + 8^4 + 8^4.

Examples

			14212 is a term because 14212 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 8^4 + 10^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 8^4 + 8^4 + 8^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 10^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 10^4 = 3^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A345849 Numbers that are the sum of nine fourth powers in exactly seven ways.

Original entry on oeis.org

6739, 6854, 6979, 7029, 7044, 7094, 7109, 7269, 7284, 7844, 7909, 7939, 8004, 8149, 8194, 8244, 8309, 8389, 8434, 8628, 8739, 8868, 8979, 9059, 9189, 9254, 9414, 9509, 9524, 9668, 9684, 9734, 9814, 9829, 9843, 9844, 9908, 9909, 9924, 9989, 10019, 10038, 10084
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345591 at term 2 because 6804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.

Examples

			6804 is a term because 6804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A345851 Numbers that are the sum of nine fourth powers in exactly nine ways.

Original entry on oeis.org

8259, 9539, 10709, 10819, 10884, 10949, 10964, 11124, 11444, 11573, 11668, 11684, 11924, 12099, 12164, 12339, 12404, 12549, 12773, 12853, 12918, 13013, 13139, 13204, 13284, 13379, 13444, 13509, 13958, 13988, 14053, 14213, 14293, 14308, 14373, 14403, 14484
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345593 at term 2 because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.

Examples

			9299 is a term because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345800 Numbers that are the sum of nine cubes in exactly eight ways.

Original entry on oeis.org

744, 770, 805, 818, 840, 842, 844, 847, 866, 868, 877, 880, 883, 887, 894, 908, 909, 910, 911, 913, 915, 916, 920, 940, 945, 946, 948, 950, 952, 954, 955, 957, 961, 964, 965, 972, 976, 983, 987, 990, 1000, 1001, 1002, 1006, 1007, 1013, 1015, 1025, 1028, 1032
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345547 at term 9 because 859 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 6^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 + 7^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 7^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 7^3.
Likely finite.

Examples

			770 is a term because 770 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A345860 Numbers that are the sum of ten fourth powers in exactly eight ways.

Original entry on oeis.org

6675, 6740, 6755, 6805, 6995, 7015, 7030, 7045, 7095, 7270, 7300, 7365, 7429, 7494, 7525, 7540, 7590, 7605, 7750, 7780, 7845, 7955, 8005, 8085, 8150, 8195, 8215, 8310, 8450, 8470, 8500, 8630, 8644, 8709, 8710, 8790, 8885, 8949, 9124, 9189, 9190, 9250, 9255
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345601 at term 5 because 6820 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.

Examples

			6740 is a term because 6740 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A346343 Numbers that are the sum of nine fifth powers in exactly eight ways.

Original entry on oeis.org

1431398, 1431640, 1531397, 1952415, 2247917, 2530399, 2652563, 2652860, 2736790, 2851254, 2965588, 3088909, 3148674, 3273590, 3297416, 3329120, 3329362, 3332244, 3336895, 3345442, 3345653, 3361614, 3362217, 3364738, 3553641, 3571549, 3577951, 3609926, 3610155
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345625 at term 5 because 1969221 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 + 16^5 = 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 12^5 + 12^5 + 13^5 + 16^5 = 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 12^5 + 12^5 + 13^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 14^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 14^5 + 15^5 = 1^5 + 4^5 + 5^5 + 8^5 + 9^5 + 13^5 + 13^5 + 13^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 + 14^5.

Examples

			1431398 is a term because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.