cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346073 a(n) = 1 + Sum_{k=0..n-4} a(k) * a(n-k-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 45, 73, 118, 185, 293, 475, 778, 1263, 2047, 3345, 5512, 9085, 14957, 24683, 40918, 67987, 113016, 188053, 313608, 524041, 876657, 1467797, 2460644, 4130893, 6942726, 11678687, 19663068, 33139295, 55904339, 94384167, 159470488
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 4], {k, 0, n - 4}]; Table[a[n], {n, 0, 42}]
    nmax = 42; A[] = 0; Do[A[x] = 1/(1 - x) + x^4 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023
  • SageMath
    @CachedFunction
    def a(n): # a = A346073
        if (n<4): return 1
        else: return 1 + sum(a(k)*a(n-k-4) for k in range(n-3))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 26 2022
    

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^4 * A(x)^2.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * Catalan(k). - Seiichi Manyama, Jan 22 2023