A179982 Values of the genus g for which there exists a compact Riemann surface of genus g admitting an automorphism group of order 84(g-1), the maximum possible, also known as the Hurwitz bound.
3, 7, 14, 17, 118, 129, 146, 385, 411, 474, 687, 769, 1009, 1025, 1459, 1537, 2091, 2131, 2185, 2663, 3404, 4369, 4375, 5433, 5489, 6553, 7201, 8065, 8193, 8589, 11626, 11665
Offset: 1
Examples
g=3 is satisfied by the Klein quartic x^3 * y + y^3 * z + z^3 * x = 0; the group is isomorphic to PSL(2,Z_7), the projective special linear group of 2 X 2 matrices with entries modulo 7.
References
- Marston Conder, Hurwitz groups: a brief survey. Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 359-370.
- Gareth A. Jones and David Singerman, Complex Functions: An algebraic and geometric viewpoint, Cambridge University Press, 1987, pp. 263-266.
- E. B. Vinber and O. V. Shvartsman, Riemann surfaces, Journal of Mathematical Sciences, 14, #1 (1980), 985-1020. Riemann surfaces, Algebra, Topologiya, Geometriya, Vol. 16 (Russian), pp. 191-245, 247 (errata insert), VINITI , Moscow, 1978.
Links
- Jeffrey M. Cohen, On Hurwitz extensions by PSL_2(7), Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 3, 395-400.
- Marston Conder, The genus of compact Riemann surfaces with maximal automorphism group, J. Algebra 108 (1987), no. 1, 204-247.
- Chih-han Sah, Groups related to compact Riemann surfaces, Acta Math. 123 (1969) 13-42.
- Wikipedia, Hurwitz Group
Programs
Extensions
Corrected by Bradley Brock, Oct 01 2012
Entry revised by N. J. A. Sloane, Nov 25 2012
Comments