cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345837 Numbers that are the sum of eight fourth powers in exactly five ways.

Original entry on oeis.org

4228, 4403, 4468, 5443, 5508, 5683, 6613, 6643, 6658, 6708, 6773, 6838, 6868, 6883, 6948, 7013, 7093, 7138, 7203, 7267, 7268, 7332, 7397, 7478, 7507, 7572, 7588, 7828, 7858, 7923, 7988, 8113, 8133, 8228, 8353, 8418, 8533, 8547, 8548, 8612, 8723, 8788, 8852
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345580 at term 11 because 6723 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.

Examples

			4403 is a term because 4403 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A345613 Numbers that are the sum of eight fifth powers in five or more ways.

Original entry on oeis.org

926372, 952653, 993573, 1133343, 1414591, 1431366, 1431397, 1447327, 1597928, 1637020, 1663391, 1697685, 1876624, 1933329, 1992377, 1993376, 1993666, 2033328, 2091879, 2175912, 2182160, 2231110, 2280544, 2280575, 2280786, 2281567, 2283668, 2329602, 2345563
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			952653 is a term because 952653 = 2^5 + 2^5 + 6^5 + 7^5 + 9^5 + 12^5 + 12^5 + 13^5 = 2^5 + 2^5 + 7^5 + 7^5 + 9^5 + 11^5 + 11^5 + 14^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 3^5 + 4^5 + 4^5 + 6^5 + 10^5 + 10^5 + 13^5 + 13^5 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 + 15^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A346282 Numbers that are the sum of seven fifth powers in exactly five ways.

Original entry on oeis.org

6768576, 6776120, 7883668, 8625376, 8740709, 10036201, 10604054, 12476826, 12618493, 13006575, 13060213, 13080706, 13174250, 13536416, 13550162, 13662500, 14110656, 15169276, 15247994, 16053313, 16060683, 16374218, 16573507, 16600001, 17735057, 17749152
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345608 at term 16 because 13562501 = 1^5 + 1^5 + 1^5 + 9^5 + 14^5 + 20^5 + 25^5 = 1^5 + 15^5 + 15^5 + 15^5 + 15^5 + 15^5 + 25^5 = 6^5 + 7^5 + 11^5 + 16^5 + 18^5 + 19^5 + 24^5 = 7^5 + 7^5 + 11^5 + 13^5 + 19^5 + 21^5 + 23^5 = 2^5 + 6^5 + 14^5 + 18^5 + 18^5 + 21^5 + 22^5 = 1^5 + 5^5 + 15^5 + 20^5 + 20^5 + 20^5 + 20^5.

Examples

			6768576 is a term because 6768576 = 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 12^5 + 23^5 = 1^5 + 3^5 + 4^5 + 8^5 + 11^5 + 17^5 + 22^5 = 6^5 + 12^5 + 13^5 + 14^5 + 15^5 + 15^5 + 21^5 = 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 20^5 = 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 20^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A346329 Numbers that are the sum of eight fifth powers in exactly four ways.

Original entry on oeis.org

391250, 392031, 455750, 519236, 604822, 622281, 672023, 672054, 672265, 673554, 697492, 703978, 707368, 730259, 763292, 857761, 893605, 893636, 893816, 893847, 894027, 894058, 894452, 894628, 896729, 897151, 901380, 903839, 909124, 909597, 910411, 911403
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345612 at term 33 because 926372 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5.

Examples

			391250 is a term because 391250 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A346331 Numbers that are the sum of eight fifth powers in exactly six ways.

Original entry on oeis.org

1431397, 2593811, 3329119, 3345410, 3609912, 3800722, 3932480, 4093604, 4096697, 4114187, 4129433, 4154031, 4169869, 4377714, 4451412, 4475603, 4484634, 4501409, 4730845, 4756642, 4882770, 4912477, 4970823, 5003645, 5112274, 5259111, 5449985, 5523925, 5722189
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345614 at term 10 because 4104553 = 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 5^5 + 7^5 + 21^5 = 3^5 + 3^5 + 4^5 + 6^5 + 8^5 + 14^5 + 16^5 + 19^5 = 3^5 + 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 18^5 + 18^5 = 3^5 + 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 18^5 + 18^5 = 1^5 + 1^5 + 4^5 + 7^5 + 10^5 + 16^5 + 16^5 + 18^5 = 7^5 + 11^5 + 11^5 + 13^5 + 14^5 + 15^5 + 16^5 + 16^5 = 6^5 + 12^5 + 12^5 + 13^5 + 13^5 + 15^5 + 16^5 + 16^5.

Examples

			1431397 is a term because 1431397 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A346340 Numbers that are the sum of nine fifth powers in exactly five ways.

Original entry on oeis.org

392063, 392274, 406559, 458875, 519237, 538291, 607947, 663871, 672024, 672055, 672266, 672297, 673586, 673797, 674578, 675390, 680041, 681330, 704582, 704822, 714299, 730260, 732603, 763027, 763324, 765873, 766417, 777820, 780099, 814082, 820887, 825678
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345622 at term 50 because 926404 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 2^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 4^5 + 4^5 + 7^5 + 11^5 + 12^5 + 12^5 + 12^5.

Examples

			392063 is a term because 392063 = 2^5 + 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 2^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 1^5 + 1^5 + 1^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.