cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345847 Numbers that are the sum of nine fourth powers in exactly five ways.

Original entry on oeis.org

3189, 4149, 4229, 4244, 4309, 4374, 4404, 4419, 4549, 4659, 4724, 4853, 4899, 5028, 5093, 5139, 5189, 5204, 5269, 5284, 5349, 5379, 5414, 5509, 5574, 5619, 5634, 5654, 5684, 5749, 5814, 5829, 5939, 6068, 6133, 6179, 6308, 6419, 6564, 6594, 6614, 6644, 6709
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345589 at term 9 because 4469 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 8^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4.

Examples

			4149 is a term because 4149 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 = 4^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A345622 Numbers that are the sum of nine fifth powers in five or more ways.

Original entry on oeis.org

392063, 392274, 406559, 458875, 519237, 538291, 607947, 663871, 672024, 672055, 672266, 672297, 673586, 673797, 674578, 675390, 680041, 681330, 704582, 704822, 714299, 730260, 732603, 763027, 763324, 765873, 766417, 777820, 780099, 814082, 820887, 825678
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			392274 is a term because 392274 = 1^5 + 1^5 + 4^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 1^5 + 3^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 2^5 + 3^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 2^5 + 3^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A346330 Numbers that are the sum of eight fifth powers in exactly five ways.

Original entry on oeis.org

926372, 952653, 993573, 1133343, 1414591, 1431366, 1447327, 1597928, 1637020, 1663391, 1697685, 1876624, 1933329, 1992377, 1993376, 1993666, 2033328, 2091879, 2175912, 2182160, 2231110, 2280544, 2280575, 2280786, 2281567, 2283668, 2329602, 2345563, 2388619
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345613 at term 7 because 1431397 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.

Examples

			926372 is a term because 926372 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A346339 Numbers that are the sum of nine fifth powers in exactly four ways.

Original entry on oeis.org

55542, 120350, 143507, 167241, 182549, 192233, 202890, 326685, 327986, 328247, 329028, 329809, 333257, 351722, 358474, 358968, 359210, 359538, 359813, 365404, 367071, 367313, 374034, 374846, 375627, 376619, 377158, 379259, 381157, 383910, 384765, 390396
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345621 at term 37 because 392063 = 2^5 + 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 2^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 1^5 + 1^5 + 1^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5.

Examples

			55542 is a term because 55542 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A346341 Numbers that are the sum of nine fifth powers in exactly six ways.

Original entry on oeis.org

926404, 936607, 952896, 985421, 993574, 993605, 993816, 1075779, 1123321, 1133344, 1134367, 1151406, 1160105, 1166111, 1177144, 1206514, 1209669, 1209847, 1215545, 1225630, 1251130, 1264929, 1265320, 1278611, 1414834, 1422367, 1422609, 1430384, 1431367
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345623 at term 30 because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.

Examples

			926404 is a term because 926404 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 2^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 4^5 + 4^5 + 7^5 + 11^5 + 12^5 + 12^5 + 12^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A346350 Numbers that are the sum of ten fifth powers in exactly five ways.

Original entry on oeis.org

200009, 220350, 235658, 329271, 329810, 330052, 359211, 359453, 359498, 360298, 367314, 368529, 374519, 374847, 375089, 375870, 376620, 376651, 377159, 377643, 380283, 382622, 384395, 384934, 387035, 388933, 391736, 392064, 392275, 392339, 392517, 392581
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345637 at term 29 because 392095 = 2^5 + 2^5 + 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 7^5 + 10^5 + 12^5 = 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5.

Examples

			200009 is a term because 200009 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 8^5 + 10^5 = 1^5 + 3^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 8^5 + 10^5 = 2^5 + 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 = 1^5 + 2^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.