cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345858 Numbers that are the sum of ten fourth powers in exactly six ways.

Original entry on oeis.org

3175, 4150, 4230, 4390, 4405, 4455, 4470, 4500, 4550, 4565, 4630, 4725, 4740, 4915, 4980, 5094, 5109, 5155, 5190, 5205, 5220, 5270, 5285, 5350, 5365, 5395, 5430, 5475, 5635, 5655, 5735, 5910, 5955, 6020, 6069, 6084, 6149, 6195, 6214, 6324, 6389, 6435, 6500
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345599 at term 8 because 4485 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 8^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4.

Examples

			4150 is a term because 4150 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 = 1^4 + 4^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A346341 Numbers that are the sum of nine fifth powers in exactly six ways.

Original entry on oeis.org

926404, 936607, 952896, 985421, 993574, 993605, 993816, 1075779, 1123321, 1133344, 1134367, 1151406, 1160105, 1166111, 1177144, 1206514, 1209669, 1209847, 1215545, 1225630, 1251130, 1264929, 1265320, 1278611, 1414834, 1422367, 1422609, 1430384, 1431367
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345623 at term 30 because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.

Examples

			926404 is a term because 926404 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 2^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 4^5 + 4^5 + 7^5 + 11^5 + 12^5 + 12^5 + 12^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345638 Numbers that are the sum of ten fifth powers in six or more ways.

Original entry on oeis.org

392095, 392306, 399839, 406802, 407583, 434676, 491643, 492063, 520261, 521106, 538323, 538534, 540927, 553325, 555098, 563526, 582089, 592398, 608190, 611072, 614196, 637833, 639903, 640715, 640895, 640926, 640957, 641106, 643671, 653523, 655327, 656616
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			392306 is a term because 392306 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 1^5 + 2^5 + 3^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 2^5 + 2^5 + 3^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A346350 Numbers that are the sum of ten fifth powers in exactly five ways.

Original entry on oeis.org

200009, 220350, 235658, 329271, 329810, 330052, 359211, 359453, 359498, 360298, 367314, 368529, 374519, 374847, 375089, 375870, 376620, 376651, 377159, 377643, 380283, 382622, 384395, 384934, 387035, 388933, 391736, 392064, 392275, 392339, 392517, 392581
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345637 at term 29 because 392095 = 2^5 + 2^5 + 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 7^5 + 10^5 + 12^5 = 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5.

Examples

			200009 is a term because 200009 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 8^5 + 10^5 = 1^5 + 3^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 8^5 + 10^5 = 2^5 + 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 = 1^5 + 2^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A346352 Numbers that are the sum of ten fifth powers in exactly seven ways.

Original entry on oeis.org

555098, 674040, 683166, 707315, 763631, 777852, 778844, 780945, 783224, 893654, 896500, 897668, 920887, 926616, 927819, 928802, 936850, 937631, 945017, 952897, 953077, 953350, 955178, 963131, 975133, 979482, 984133, 985664, 987257, 991908, 993575, 993606
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345639 at term 19 because 944383 = 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 5^5 + 5^5 + 7^5 + 7^5 + 7^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5.

Examples

			555098 is a term because 555098 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 7^5 + 14^5 = 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 7^5 + 8^5 + 10^5 + 13^5 = 1^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 7^5 + 10^5 + 13^5 = 1^5 + 2^5 + 5^5 + 7^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 13^5 = 4^5 + 4^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 11^5 + 12^5 = 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 7^5 + 9^5 + 9^5 + 11^5 + 12^5 = 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 + 11^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.