A346389 a(n) is the number of proper divisors of A324297(n) ending with 6.
1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 4, 2, 1, 2, 2, 3, 3, 2, 2, 4, 2, 5, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 4, 3, 4, 2, 5, 3, 3, 2, 2, 2, 2, 7, 2, 1, 2, 2, 3, 2, 3, 2, 2, 5, 3, 6, 3, 3, 2, 2, 2, 5, 2, 2, 3, 4, 3, 5, 2, 5, 4, 3, 2, 3, 6, 2, 2, 2, 6, 2, 2, 3, 2, 2, 3, 7
Offset: 1
Examples
a(12) = 4 since there are 4 proper divisors of A324297(12) = 576 ending with 6: 6, 16, 36 and 96.
Programs
-
Mathematica
b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+6]==0 && Mod[(10*n+6)/(10*k+6), 10]==6 && 10*n+6>Max[b], AppendTo[b, 10*n+6]]]]; (* A324297 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#,10]==6&)], -1]]]]; a
Comments