cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346509 Number of positive integers with n digits that are the product of two integers greater than 1 and ending with 1.

Original entry on oeis.org

0, 0, 12, 200, 2660, 31850, 361985, 3982799, 42914655, 455727689, 4788989458, 49930700093, 517443017072, 5336861879564
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A346507.

Crossrefs

Cf. A017281, A052268, A087630, A337855 (ending with 5), A337856 (ending with 6), A346507.

Programs

  • PARI
    a(n) = {my(res = 0); forstep(i = 10^(n-1) + 1, 10^n, 10, f = factor(i); if(bigomega(f) == 1, next); d = divisors(f); for(j = 2, (#d~ + 1)>>1, if(d[j]%10 == 1 && d[#d + 1 - j]%10 == 1, res++; next(2) ) ) ); res } \\ David A. Corneth, Jul 22 2021
  • Python
    def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    def a(n): return len(A346507upto(10**n)) - len(A346507upto(10**(n-1)))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Jul 22 2021
    

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(6)-a(9) from Michael S. Branicky, Jul 22 2021
a(10) from David A. Corneth, Jul 22 2021
a(11) from Michael S. Branicky, Jul 23 2021
a(11) corrected and extended with a(12) by Martin Ehrenstein, Aug 03 2021
a(13)-a(14) from Martin Ehrenstein, Aug 05 2021