cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A337856 Number of positive integers with n digits that are the product of two integers ending with 6.

Original entry on oeis.org

0, 2, 20, 230, 2515, 26889, 282211, 2930013, 30196730, 309564822, 3161099901, 32182595954, 326874672928, 3313770788984
Offset: 1

Views

Author

Stefano Spezia, Sep 27 2020

Keywords

Comments

a(n) is the number of n-digit numbers in A324297.

Crossrefs

Programs

  • Python
    def A337856(n):
        k, n1, n2, pset = 0, 10**(n-1)//2-18, 10**n//2-18, set()
        while 50*k**2+60*k < n2:
            a, b = divmod(n1-30*k,50*k+30)
            m = max(k,a+int(b>0))
            r = 50*k*m+30*(k+m)
            while r < n2:
                pset.add(r)
                m += 1
                r += 50*k+30
            k += 1
        return len(pset) # Chai Wah Wu, Sep 26 2021

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(5) corrected by and a(6)-a(9) from Jinyuan Wang, Oct 01 2020
a(10)-a(13) from Bert Dobbelaere, Oct 20 2020
a(14) from Martin Ehrenstein, Aug 06 2021

A346952 Number of positive integers with n digits that are the product of two integers ending with 3.

Original entry on oeis.org

1, 3, 37, 398, 4303, 45765, 480740, 5005328, 51770770, 532790460, 5461696481, 55814395421, 568944166801, 5787517297675
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A346950.

Crossrefs

Cf. A017377, A052268, A346509 (ending with 1), A337855 (ending with 5), A337856 (ending with 6), A346950.

Programs

  • Mathematica
    Table[{lo,hi}={10^(n-1),10^n};Length@Select[Union@Flatten@Table[a*b,{a,3,Floor[hi/3],10},{b,a,Floor[hi/a],10}],lo<#Giorgos Kalogeropoulos, Aug 16 2021 *)
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 09 2021

Formula

a(n) < A052268(n).
Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(6)-a(11) from Michael S. Branicky, Aug 09 2021
a(12)-a(14) from Martin Ehrenstein, Aug 22 2021

A346507 Positive integers k that are the product of two integers greater than 1 and ending with 1.

Original entry on oeis.org

121, 231, 341, 441, 451, 561, 651, 671, 781, 861, 891, 961, 1001, 1071, 1111, 1221, 1271, 1281, 1331, 1441, 1491, 1551, 1581, 1661, 1681, 1701, 1771, 1881, 1891, 1911, 1991, 2091, 2101, 2121, 2201, 2211, 2321, 2331, 2431, 2501, 2511, 2541, 2601, 2651, 2751, 2761
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Comments

All the terms end with 1 (A017281).

Examples

			121 = 11*11, 231 = 11*21, 341 = 11*31, 441 = 21*21, 451 = 11*41, ...
		

Crossrefs

Cf. A017281 (supersequence), A053742 (ending with 5), A324297 (ending with 6), A346508, A346509, A346510.

Programs

  • Mathematica
    a={}; For[n=1, n<=300, n++, For[k=1, kMax[a], AppendTo[a, 10n+1]]]]; a
  • PARI
    isok(k) = fordiv(k, d, if ((d>1) && (dMichel Marcus, Jul 28 2021
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2761)) # Michael S. Branicky, Jul 22 2021
    

Formula

Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 21 2021

A347255 Number of positive integers with n digits that are the product of two integers ending with 4.

Original entry on oeis.org

0, 3, 25, 281, 2941, 30596, 315385, 3231664, 32972224, 335346193, 3402373313, 34454358909, 348373701706, 3518101287286, 35491654274101
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A347253.

Crossrefs

Cf. A346509 (ending with 1), A346952 (ending with 3), A337855 (ending with 5), A337856 (ending with 6).

Programs

  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 24 2021

Formula

a(n) < A052268(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(11) from Michael S. Branicky, Aug 25 2021
a(12)-a(15) from Martin Ehrenstein, Sep 29 2021

A348055 Number of positive integers with n digits that are the product of two integers ending with 7.

Original entry on oeis.org

0, 1, 20, 255, 3064, 34743, 380939, 4089499, 43282317, 453472867, 4715695283, 48760330737, 501941505404, 5148657883067, 52659616820819
Offset: 1

Views

Author

Stefano Spezia, Sep 26 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A348054.

Crossrefs

Cf. A346509 (ending with 1), A346629 (ending with 2), A346952 (ending with 3), A347255 (ending with 4), A337855 (ending with 5), A337856 (ending with 6), A348549 (ending with 8).

Programs

  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Sep 26 2021

Formula

a(n) < A052268(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(11) from Michael S. Branicky, Sep 26 2021
a(12)-a(15) from Martin Ehrenstein, Oct 25 2021

A346508 Positive integers k such that 10*k+1 is equal to the product of two integers greater than 1 and ending with 1 (A346507).

Original entry on oeis.org

12, 23, 34, 44, 45, 56, 65, 67, 78, 86, 89, 96, 100, 107, 111, 122, 127, 128, 133, 144, 149, 155, 158, 166, 168, 170, 177, 188, 189, 191, 199, 209, 210, 212, 220, 221, 232, 233, 243, 250, 251, 254, 260, 265, 275, 276, 282, 287, 291, 296, 298, 309, 311, 313, 317
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Examples

			107 is a term because 21*51 = 1071 = 107*10 + 1.
		

Crossrefs

Cf. A016873 (ending with 5), A017281, A324298 (ending with 6), A346507, A346509, A346510.

Programs

  • Mathematica
    a={}; For[n=1, n<=350, n++, For[k=1, kMax[10a+1], AppendTo[a, n]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(11, 10*lim//11+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim))
    print(aupto(318)) # Michael S. Branicky, Aug 21 2021

Formula

a(n) = (A346507(n) - 1)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A346507(n) - 1)/10 and lim_{n->infinity} A346507(n)/A346507(n-1) = 1. - Stefano Spezia, Aug 21 2021

A346510 a(n) is the number of nontrivial divisors of A346507(n) ending with 1.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Examples

			a(42) = 4 since there are 4 nontrivial divisors of A346507(42) = 2541 ending with 1: 11, 21, 121 and 231.
		

Crossrefs

Cf. A017281, A070824, A346388 (ending with 5), A346389 (ending with 6), A346392, A346507, A346508, A346509.

Programs

  • Mathematica
    b={}; For[n=1, n<=500, n++, For[k=1, kMax[b], AppendTo[b, 10n+1]]]]; (* A346507 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==1&)], -1]]-1]]; a
  • PARI
    f(n) = sumdiv(n, d, (d>1) && (d(f(x)), [1..5000])) \\ Michel Marcus, Jul 28 2021
    
  • Python
    from sympy import divisors
    def f(n): return sum(d%10 == 1 for d in divisors(n)[1:-1])
    def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    print(list(map(f, A346507upto(5000)))) # Michael S. Branicky, Jul 31 2021

Formula

a(n) = A346392(A346507(n)) - 1.

A348549 Number of positive integers with n digits that are the product of two integers ending with 8.

Original entry on oeis.org

0, 1, 14, 195, 2200, 24013, 255969, 2687317, 27934809, 288342379, 2960920297, 30285890402, 308834717932, 3141625339760, 31895159990436
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A348548.

Crossrefs

Cf. A346509 (ending with 1), A346629 (ending with 2), A346952 (ending with 3), A347255 (ending with 4), A337855 (ending with 5), A337856 (ending with 6), A348055 (ending with 7).

Programs

  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(8, hi//8+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) < A052268(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(10) from Michael S. Branicky, Oct 22 2021
a(11)-a(15) from Martin Ehrenstein, Nov 06 2021
Showing 1-8 of 8 results.