cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A346509 Number of positive integers with n digits that are the product of two integers greater than 1 and ending with 1.

Original entry on oeis.org

0, 0, 12, 200, 2660, 31850, 361985, 3982799, 42914655, 455727689, 4788989458, 49930700093, 517443017072, 5336861879564
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A346507.

Crossrefs

Cf. A017281, A052268, A087630, A337855 (ending with 5), A337856 (ending with 6), A346507.

Programs

  • PARI
    a(n) = {my(res = 0); forstep(i = 10^(n-1) + 1, 10^n, 10, f = factor(i); if(bigomega(f) == 1, next); d = divisors(f); for(j = 2, (#d~ + 1)>>1, if(d[j]%10 == 1 && d[#d + 1 - j]%10 == 1, res++; next(2) ) ) ); res } \\ David A. Corneth, Jul 22 2021
  • Python
    def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    def a(n): return len(A346507upto(10**n)) - len(A346507upto(10**(n-1)))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Jul 22 2021
    

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(6)-a(9) from Michael S. Branicky, Jul 22 2021
a(10) from David A. Corneth, Jul 22 2021
a(11) from Michael S. Branicky, Jul 23 2021
a(11) corrected and extended with a(12) by Martin Ehrenstein, Aug 03 2021
a(13)-a(14) from Martin Ehrenstein, Aug 05 2021

A346952 Number of positive integers with n digits that are the product of two integers ending with 3.

Original entry on oeis.org

1, 3, 37, 398, 4303, 45765, 480740, 5005328, 51770770, 532790460, 5461696481, 55814395421, 568944166801, 5787517297675
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A346950.

Crossrefs

Cf. A017377, A052268, A346509 (ending with 1), A337855 (ending with 5), A337856 (ending with 6), A346950.

Programs

  • Mathematica
    Table[{lo,hi}={10^(n-1),10^n};Length@Select[Union@Flatten@Table[a*b,{a,3,Floor[hi/3],10},{b,a,Floor[hi/a],10}],lo<#Giorgos Kalogeropoulos, Aug 16 2021 *)
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 09 2021

Formula

a(n) < A052268(n).
Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(6)-a(11) from Michael S. Branicky, Aug 09 2021
a(12)-a(14) from Martin Ehrenstein, Aug 22 2021

A324298 Positive integers k such that 10*k+6 is equal to the product of two integers ending with 6 (A324297).

Original entry on oeis.org

3, 9, 15, 21, 25, 27, 33, 39, 41, 45, 51, 57, 63, 67, 69, 73, 75, 81, 87, 89, 93, 99, 105, 111, 117, 119, 121, 123, 129, 135, 137, 141, 145, 147, 153, 159, 165, 169, 171, 177, 183, 185, 189, 195, 197, 201, 207, 211, 213, 217, 219, 223, 225, 231, 233, 237, 243, 249
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms of this sequence are odd.
Why? If an integer 10*k+6 = (10*a+6) * (10*b+6), then k = 10*a*b + 6*(a+b) + 3, so k is odd. - Bernard Schott, May 13 2019

Examples

			145 is a term because 26*56 = 1456 = 145*10 + 6. - _Bernard Schott_, May 13 2019
		

Crossrefs

Cf. A017341, A053742 (ending with 5), A324297, A337856, A346389.

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[10*a+6],AppendTo[a,n]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(k) = {my(n=10*k+6, d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1))); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(6, 10*lim//6+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim))
    print(aupto(249)) # Michael S. Branicky, Aug 21 2021

Formula

a(n) = (A324297(n) - 6)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A324297(n) - 6)/10 and lim_{n->infinity} A324297(n)/A324297(n-1) = 1. - Stefano Spezia, Aug 21 2021

A337855 Number of n-digit positive integers that are the product of two integers ending with 5.

Original entry on oeis.org

0, 2, 18, 180, 1800, 18000, 180000, 1800000, 18000000, 180000000, 1800000000, 18000000000, 180000000000, 1800000000000, 18000000000000, 180000000000000, 1800000000000000, 18000000000000000, 180000000000000000, 1800000000000000000, 18000000000000000000, 180000000000000000000
Offset: 1

Views

Author

Stefano Spezia, Sep 27 2020

Keywords

Comments

a(n) is the number of n-digit numbers in A053742.

Crossrefs

Cf. A011557 (powers of 10), A052268 (number of n-digit integers), A053742 (product of two integers ending with 5), A093136, A337856.

Programs

  • Mathematica
    LinearRecurrence[{10},{0,0,2,18},22]

Formula

O.g.f.: 2*(1 - x)*x^2/(1 - 10*x).
E.g.f.: (9*exp(10*x) - 9 - 90*x + 50*x^2)/500.
a(n) = 10*a(n-1) for n > 3 , with a(1) = 0, a(2) = 2 and a(3) = 18.
a(n) = 18*10^(n-3) for n > 2.
a(n) = 18*A011557(n - 3) for n > 2.
a(n) = 2*A052268(n - 2) for n > 2.
Sum_{i=2..n} a(n) = A093136(n - 1) for n > 1.
a(n) = 2*floor((k + 27*10^(n-2))/30), with 2 < k < 28. [This formula was found in the form k = 7 by Christian Krause's LODA miner] - Stefano Spezia, Dec 06 2021

A346389 a(n) is the number of proper divisors of A324297(n) ending with 6.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 4, 2, 1, 2, 2, 3, 3, 2, 2, 4, 2, 5, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 4, 3, 4, 2, 5, 3, 3, 2, 2, 2, 2, 7, 2, 1, 2, 2, 3, 2, 3, 2, 2, 5, 3, 6, 3, 3, 2, 2, 2, 5, 2, 2, 3, 4, 3, 5, 2, 5, 4, 3, 2, 3, 6, 2, 2, 2, 6, 2, 2, 3, 2, 2, 3, 7
Offset: 1

Views

Author

Stefano Spezia, Jul 15 2021

Keywords

Examples

			a(12) = 4 since there are 4 proper divisors of A324297(12) = 576 ending with 6: 6, 16, 36 and 96.
		

Crossrefs

Cf. A017341, A032741, A324297, A324298, A337856, A346388 (ending with 5), A346392.

Programs

  • Mathematica
    b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+6]==0 && Mod[(10*n+6)/(10*k+6), 10]==6 && 10*n+6>Max[b], AppendTo[b, 10*n+6]]]]; (* A324297 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#,10]==6&)], -1]]]]; a

Formula

a(n) = A346392(A324297(n)).

A347255 Number of positive integers with n digits that are the product of two integers ending with 4.

Original entry on oeis.org

0, 3, 25, 281, 2941, 30596, 315385, 3231664, 32972224, 335346193, 3402373313, 34454358909, 348373701706, 3518101287286, 35491654274101
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A347253.

Crossrefs

Cf. A346509 (ending with 1), A346952 (ending with 3), A337855 (ending with 5), A337856 (ending with 6).

Programs

  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 24 2021

Formula

a(n) < A052268(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(11) from Michael S. Branicky, Aug 25 2021
a(12)-a(15) from Martin Ehrenstein, Sep 29 2021

A348055 Number of positive integers with n digits that are the product of two integers ending with 7.

Original entry on oeis.org

0, 1, 20, 255, 3064, 34743, 380939, 4089499, 43282317, 453472867, 4715695283, 48760330737, 501941505404, 5148657883067, 52659616820819
Offset: 1

Views

Author

Stefano Spezia, Sep 26 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A348054.

Crossrefs

Cf. A346509 (ending with 1), A346629 (ending with 2), A346952 (ending with 3), A347255 (ending with 4), A337855 (ending with 5), A337856 (ending with 6), A348549 (ending with 8).

Programs

  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Sep 26 2021

Formula

a(n) < A052268(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(11) from Michael S. Branicky, Sep 26 2021
a(12)-a(15) from Martin Ehrenstein, Oct 25 2021

A346629 Number of n-digit positive integers that are the product of two integers ending with 2.

Original entry on oeis.org

1, 4, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1

Views

Author

Stefano Spezia, Jul 25 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A139245.
After initial 1 or 2 values the same as A137233. - R. J. Mathar, Aug 23 2021

Crossrefs

Cf. A011557 (powers of 10), A017293 (positive integers ending with 2), A052268 (number of n-digit integers), A139245 (product of two integers ending with 2), A093143, A337855, A337856.
Cf. A137233.

Programs

  • Mathematica
    LinearRecurrence[{10},{1,4,45},25]

Formula

O.g.f.: x*(1 - 6*x + 5*x^2)/(1 - 10*x).
E.g.f.: (9*exp(10*x) - 9 + 110*x - 50*x^2)/200.
a(n) = 10*a(n-1) for n > 3, with a(1) = 1, a(2) = 4 and a(3) = 45.
a(n) = 45*10^(n-3) for n > 2.
a(n) = 45*A011557(n-3) for n > 2.
Sum_{i=1..n} a(n) = A093143(n-1).

A347748 Number of positive integers with n digits that are equal both to the product of two integers ending with 4 and to that of two integers ending with 6.

Original entry on oeis.org

0, 1, 12, 159, 1859, 20704, 223525, 2370684, 24842265, 258128126, 2665475963
Offset: 1

Views

Author

Stefano Spezia, Sep 12 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A347746.

Crossrefs

Programs

  • Mathematica
    Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Intersection[Union@Flatten@Table[a*b, {a, 4, Floor[hi/4], 10}, {b, a, Floor[hi/a], 10}],Union@Flatten@Table[a*b, {a, 6, Floor[hi/6], 10}, {b, a, Floor[hi/a], 10}]], lo<#
    				
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) & set(a*b for a in range(6, hi//6+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 06 2021

Formula

a(n) < A052268(n).
a(n) = A337856(n) + A347255(n) - A347749(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(10) from Michael S. Branicky, Oct 06 2021
a(11) from Frank A. Stevenson, Jan 06 2024

A347749 Number of positive integers with n digits and final digit 6 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

0, 4, 33, 352, 3597, 36781, 374071, 3790993, 38326689, 386782889
Offset: 1

Views

Author

Stefano Spezia, Sep 12 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A347747.

Crossrefs

Programs

  • Mathematica
    Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Union[Union@Flatten@Table[a*b, {a, 4, Floor[hi/4], 10}, {b, a, Floor[hi/a], 10}],Union@Flatten@Table[a*b, {a, 6, Floor[hi/6], 10}, {b, a, Floor[hi/a], 10}]], lo<#
    				
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) | set(a*b for a in range(6, hi//6+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 06 2021

Formula

a(n) < A052268(n).
a(n) = A337856(n) + A347255(n) - A347748(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(10) from Michael S. Branicky, Oct 06 2021
Showing 1-10 of 11 results. Next