cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347747 Positive integers with final digit 6 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

16, 36, 56, 96, 136, 156, 176, 196, 216, 256, 276, 296, 336, 376, 396, 416, 456, 476, 496, 516, 536, 576, 616, 636, 656, 676, 696, 736, 756, 776, 816, 856, 876, 896, 936, 976, 996, 1016, 1036, 1056, 1096, 1116, 1136, 1156, 1176, 1196, 1216, 1236, 1256, 1296, 1316
Offset: 1

Views

Author

Stefano Spezia, Sep 12 2021

Keywords

Comments

Union of A324297 and A347253.

Examples

			16 = 4*4, 36 = 6*6, 56 = 4*14, 96 = 4*24 = 6*16, 136 = 4*34, 156 = 6*26, ...
		

Crossrefs

Cf. A017341 (supersequence), A324297, A347253, A347749.

Programs

  • Mathematica
    a={}; For[n=0, n<=150, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && 10*n+6>Max[a] || Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a], AppendTo[a, 10*n+6]]]]; a
    tisdQ[n_]:=AnyTrue[{Mod[#,10],Mod[n/#,10]}&/@Divisors[n],#[[1]] == #[[2]]&]; Select[10 Range[150]+6,tisdQ] (* Harvey P. Dale, Dec 27 2021 *)
  • PARI
    isok(m) = if ((m % 10) == 6, fordiv(m, d, if ((d % 10) == (m/d % 10), return(1)))); \\ Michel Marcus, Oct 06 2021
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1317)) # Michael S. Branicky, Sep 12 2021
    

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A347748 Number of positive integers with n digits that are equal both to the product of two integers ending with 4 and to that of two integers ending with 6.

Original entry on oeis.org

0, 1, 12, 159, 1859, 20704, 223525, 2370684, 24842265, 258128126, 2665475963
Offset: 1

Views

Author

Stefano Spezia, Sep 12 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A347746.

Crossrefs

Programs

  • Mathematica
    Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Intersection[Union@Flatten@Table[a*b, {a, 4, Floor[hi/4], 10}, {b, a, Floor[hi/a], 10}],Union@Flatten@Table[a*b, {a, 6, Floor[hi/6], 10}, {b, a, Floor[hi/a], 10}]], lo<#
    				
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) & set(a*b for a in range(6, hi//6+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 06 2021

Formula

a(n) < A052268(n).
a(n) = A337856(n) + A347255(n) - A347749(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(10) from Michael S. Branicky, Oct 06 2021
a(11) from Frank A. Stevenson, Jan 06 2024
Showing 1-2 of 2 results.