A346534 Denominators of approximations j/k for Pi such that abs(j/k - Pi)*sqrt(5)*k^2 < 1.
1, 7, 14, 113, 226, 339, 452, 565, 678, 791, 904, 1017, 1130, 1243, 33215, 99532, 364913, 1725033, 3450066, 25510582, 131002976, 340262731, 811528438, 1963319607, 6701487259, 13402974518, 20104461777, 26805949036, 33507436295, 40208923554, 567663097408
Offset: 1
Examples
22/7 ~ 3.1428571 and E/M ~ 0.1385. 355/113 ~ 3.1415929 and E/M ~ 0.0076. From _Jon E. Schoenfield_, Aug 06 2021: (Start) k j E = |j/k - Pi| M = 1/(sqrt(5)*k^2) E/M ----- ------ -------------- ------------------- ------- 1 3 0.141592653590 0.44721359549995794 0.31661 7 22 0.001264489267 0.00912680807142771 0.13855 14 44 0.001264489267 0.00228170201785693 0.55419 113 355 0.000000266764 0.00003502338440755 0.00762 226 710 0.000000266764 0.00000875584610189 0.03047 339 1065 0.000000266764 0.00000389148715639 0.06855 452 1420 0.000000266764 0.00000218896152547 0.12187 565 1775 0.000000266764 0.00000140093537630 0.19042 678 2130 0.000000266764 0.00000097287178910 0.27420 791 2485 0.000000266764 0.00000071476294709 0.37322 904 2840 0.000000266764 0.00000054724038137 0.48747 1017 3195 0.000000266764 0.00000043238746182 0.61696 1130 3550 0.000000266764 0.00000035023384408 0.76167 1243 3905 0.000000266764 0.00000028944945791 0.92163 33215 104348 0.000000000332 0.00000000040536522 0.81810 (End)
Links
- AMS, Rational approximation of irrational numbers
- Jon E. Schoenfield, Magma program with explanation of algorithm
- Wikipedia, Hurwitz's theorem (number theory)
Programs
-
Magma
// See Links.
-
Mathematica
a={}; For[k=1,k<=10^6,k++,If[Abs[Round[k Pi]/k-Pi]Sqrt[5] k^2<1,AppendTo[a,k]]]; a (* Stefano Spezia, Aug 07 2021 *)
-
PARI
is(k) = my(j=round(Pi*k)); abs(j/k - Pi)*sqrt(5)*k^2 < 1; \\ Jinyuan Wang, Aug 06 2021
Extensions
a(17)-a(19) from Jinyuan Wang, Aug 06 2021
a(20)-a(31) from Jon E. Schoenfield, Aug 06 2021
Comments