cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: June Richardson

June Richardson's wiki page.

June Richardson has authored 1 sequences.

A346534 Denominators of approximations j/k for Pi such that abs(j/k - Pi)*sqrt(5)*k^2 < 1.

Original entry on oeis.org

1, 7, 14, 113, 226, 339, 452, 565, 678, 791, 904, 1017, 1130, 1243, 33215, 99532, 364913, 1725033, 3450066, 25510582, 131002976, 340262731, 811528438, 1963319607, 6701487259, 13402974518, 20104461777, 26805949036, 33507436295, 40208923554, 567663097408
Offset: 1

Author

June Richardson, Jul 22 2021

Keywords

Comments

Define two parameters E and M for a rational approximation j/k for an irrational number x: E = abs(j/k - x) (the absolute error) and M = 1/(sqrt(5)*k^2). Hurwitz's theorem states that every real number has infinitely many rational approximations that satisfy E/M < 1, making each such approximation a "strong approximation". This sequence lists the denominators of such numbers for the irrational number Pi.

Examples

			22/7 ~ 3.1428571 and E/M ~ 0.1385.
355/113 ~ 3.1415929 and E/M ~ 0.0076.
From _Jon E. Schoenfield_, Aug 06 2021: (Start)
    k       j    E = |j/k - Pi|  M = 1/(sqrt(5)*k^2)    E/M
  -----  ------  --------------  -------------------  -------
      1       3  0.141592653590  0.44721359549995794  0.31661
      7      22  0.001264489267  0.00912680807142771  0.13855
     14      44  0.001264489267  0.00228170201785693  0.55419
    113     355  0.000000266764  0.00003502338440755  0.00762
    226     710  0.000000266764  0.00000875584610189  0.03047
    339    1065  0.000000266764  0.00000389148715639  0.06855
    452    1420  0.000000266764  0.00000218896152547  0.12187
    565    1775  0.000000266764  0.00000140093537630  0.19042
    678    2130  0.000000266764  0.00000097287178910  0.27420
    791    2485  0.000000266764  0.00000071476294709  0.37322
    904    2840  0.000000266764  0.00000054724038137  0.48747
   1017    3195  0.000000266764  0.00000043238746182  0.61696
   1130    3550  0.000000266764  0.00000035023384408  0.76167
   1243    3905  0.000000266764  0.00000028944945791  0.92163
  33215  104348  0.000000000332  0.00000000040536522  0.81810
(End)
		

Crossrefs

Cf. A002163 (sqrt(5)).

Programs

  • Magma
    // See Links.
    
  • Mathematica
    a={}; For[k=1,k<=10^6,k++,If[Abs[Round[k Pi]/k-Pi]Sqrt[5] k^2<1,AppendTo[a,k]]]; a (* Stefano Spezia, Aug 07 2021 *)
  • PARI
    is(k) = my(j=round(Pi*k)); abs(j/k - Pi)*sqrt(5)*k^2 < 1; \\ Jinyuan Wang, Aug 06 2021

Extensions

a(17)-a(19) from Jinyuan Wang, Aug 06 2021
a(20)-a(31) from Jon E. Schoenfield, Aug 06 2021