A346537 Squares that are divisible by the product of their nonzero digits.
1, 4, 9, 36, 100, 144, 400, 900, 1024, 1296, 2304, 2500, 2916, 3600, 10000, 11664, 12100, 14400, 22500, 32400, 40000, 41616, 78400, 82944, 90000, 102400, 110224, 121104, 122500, 129600, 152100, 176400, 186624, 200704, 202500, 219024, 230400, 250000, 260100, 291600
Offset: 1
Examples
For the perfect square 1024 = 32^2 the product of its nonzero digits is 8 which divides 1024.
Links
- Jean-Marie De Koninck and Florian Luca, Positive integers divisible by the product of their nonzero digits, Port. Math. 64 (2007) 75-85. (This proof for upper bounds contains an error. See the paper below.)
- Jean-Marie De Koninck and Florian Luca, Corrigendum to "Positive integers divisible by the product of their nonzero digits", Portugaliae Math. 64 (2007), 1: 75-85, Port. Math. 74 (2017), 169-170.
Programs
-
Mathematica
Select[Range[500]^2, Divisible[#, Times @@ Select[IntegerDigits[#], #1 > 0 &]] &] (* Amiram Eldar, Jul 23 2021 *)
-
PARI
isok(m) = issquare(m) && !(m % vecprod(select(x->(x>0), digits(m)))); lista(nn) = for (m=1, nn, if (isok(m^2), print1(m^2, ", "))); \\ Michel Marcus, Jul 23 2021
-
Python
from math import prod def nzpd(n): return prod([int(d) for d in str(n) if d != '0']) def ok(sqr): return sqr > 0 and sqr%nzpd(sqr) == 0 print(list(filter(ok, (i*i for i in range(541))))) # Michael S. Branicky, Jul 23 2021