cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346912 a(0) = 1; a(n) = a(n-1) + a(floor(n/2)) + 1.

Original entry on oeis.org

1, 3, 7, 11, 19, 27, 39, 51, 71, 91, 119, 147, 187, 227, 279, 331, 403, 475, 567, 659, 779, 899, 1047, 1195, 1383, 1571, 1799, 2027, 2307, 2587, 2919, 3251, 3655, 4059, 4535, 5011, 5579, 6147, 6807, 7467, 8247, 9027, 9927, 10827, 11875, 12923, 14119, 15315
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2021

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; procname(n-1) + procname(floor(n/2)) + 1 end proc;
    f(0):= 1:
    map(f, [$1..50]); # Robert Israel, May 04 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/2]] + 1; Table[a[n], {n, 0, 47}]
    nmax = 47; CoefficientList[Series[(1/(1 - x)) (-1 + 2 Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]]}]), {x, 0, nmax}], x]
  • Python
    from itertools import islice
    from collections import deque
    def A346912_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 3, 7)
        while True:
            a += b
            yield 4*a - 1
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A346912_list = list(islice(A346912_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

G.f.: (1/(1 - x)) * (-1 + 2 * Product_{k>=0} 1/(1 - x^(2^k))).
a(n) = n + 1 + Sum_{k=1..n} a(floor(k/2)).
a(n) = 2 * A000123(n) - 1.
a(n) = 4 * A033485(n) - 1 for n > 0. - Hugo Pfoertner, Aug 12 2021
From Michael Tulskikh, Aug 12 2021: (Start)
2*a(2n) = a(2n-1) + a(2n+1).
a(2n) = a(2n-2) + a(n-1) + a(n) + 2.
a(2n) = 2*(Sum_{i=0..n} a(i)) - a(n) + 2n. (End)