cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386254 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.

Original entry on oeis.org

1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / j!).

A386255 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.

Original entry on oeis.org

1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / (j-1)!).

A347005 E.g.f.: Product_{k>=1} 1 / (1 - exp(x) * x^k / k!).

Original entry on oeis.org

1, 1, 5, 28, 205, 1856, 19964, 249005, 3535613, 56339884, 996009280, 19350090365, 409850078356, 9400728524669, 232154433941057, 6141705628777193, 173295665869432733, 5195039603196754564, 164890990869273983108, 5524278740902526776085, 194815729875439415542760
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - Exp[x] x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp( Sum_{k>=1} ( Sum_{d|k} exp(d*x) / (d * ((k/d)!)^d) ) * x^k ).
E.g.f.: Product_{k>=1} 1 / (1 - Sum_{j>=k} binomial(j,k) * x^j / j!).
a(n) ~ c * n! / ((1 + LambertW(1)) * LambertW(1)^n), where c = Product_{k>=2} (1/(1 - LambertW(1)^(k-1)/k!)) = 1.487589725380080111479849424209442083... - Vaclav Kotesovec, Aug 10 2021
Showing 1-3 of 3 results.