A347022
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(1/5).
Original entry on oeis.org
1, 1, 5, 50, 720, 13650, 320370, 8967720, 291538080, 10795026840, 448484788680, 20658543923280, 1044915105622800, 57572197848878400, 3432143603792520000, 220109018869587398400, 15110184224165199667200, 1105545474191480800492800, 85881534014930659599571200
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - 5 Log[1 + x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
A347020
Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(1/3).
Original entry on oeis.org
1, 1, 3, 18, 150, 1644, 22116, 353856, 6554376, 138001896, 3254445144, 84979363248, 2433814616592, 75858381808416, 2556180134677152, 92597465283789312, 3588434497019272320, 148134619713440384640, 6489652665043455707520, 300712023388466713739520
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - 3 Log[1 + x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 19}]
A347023
E.g.f.: 1 / (1 - 6 * log(1 + x))^(1/6).
Original entry on oeis.org
1, 1, 6, 72, 1254, 28794, 819888, 27869316, 1101032100, 49570797780, 2505156062472, 140417898936336, 8644973807845368, 579908437058338920, 42098286646367326368, 3288252917244250703664, 274974019392668843164176, 24510436934573885695407504, 2319947117871178825560902112
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - 6 Log[1 + x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
A365600
Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(3/4).
Original entry on oeis.org
1, 3, 18, 174, 2292, 38292, 774624, 18399840, 501868416, 15456483840, 530462128896, 20073406663296, 830293158570624, 37267057695192192, 1803930663341528064, 93672204405378891264, 5193925606670524254720, 306280622206497897745920
Offset: 0
-
a[n_] := Sum[Product[4*j + 3, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 4*j+3)*stirling(n, k, 1));
Showing 1-4 of 4 results.
Comments