cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A365602 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(3/5).

Original entry on oeis.org

1, 3, 21, 246, 3990, 82800, 2092560, 62343600, 2139137760, 83064002160, 3600715721040, 172353630085920, 9028586395211040, 513740204261763840, 31553316959017737600, 2080500578006553619200, 146577866381052082876800, 10988979300484733769667200
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+3)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (5 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k).

A347020 Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(1/3).

Original entry on oeis.org

1, 1, 3, 18, 150, 1644, 22116, 353856, 6554376, 138001896, 3254445144, 84979363248, 2433814616592, 75858381808416, 2556180134677152, 92597465283789312, 3588434497019272320, 148134619713440384640, 6489652665043455707520, 300712023388466713739520
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - 3 Log[1 + x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * A007559(k).
a(n) ~ n! * exp(1/9) / (Gamma(1/3) * 3^(1/3) * n^(2/3) * (exp(1/3) - 1)^(n + 1/3)). - Vaclav Kotesovec, Aug 14 2021
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (3 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 11 2023

A347021 Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(1/4).

Original entry on oeis.org

1, 1, 4, 32, 364, 5444, 100520, 2210760, 56406240, 1637877600, 53327583360, 1924096475520, 76198487927040, 3285955396558080, 153273199794071040, 7689131281851770880, 412809183978447306240, 23616192920003184176640, 1434201753814306170808320
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - 4 Log[1 + x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * A007696(k).
a(n) ~ n! * exp(1/16) / (Gamma(1/4) * 2^(1/2) * n^(3/4) * (exp(1/4) - 1)^(n + 1/4)). - Vaclav Kotesovec, Aug 14 2021
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (4 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 11 2023

A365603 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(4/5).

Original entry on oeis.org

1, 4, 32, 404, 6924, 150000, 3927480, 120582360, 4246964280, 168767136000, 7468938047520, 364284571992480, 19412919898230240, 1122216138563359680, 69941868616009932480, 4675040053248335097600, 333605090142406849939200, 25312518953112479346316800
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+4)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (5 - k/n) * (k-1)! * binomial(n,k) * a(n-k).

A365604 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x)).

Original entry on oeis.org

1, 5, 45, 610, 11020, 248870, 6744350, 213233400, 7704814200, 313199930400, 14146162064400, 702826758144000, 38093116667766000, 2236695336601458000, 141433354184701746000, 9582086196220281456000, 692463727252196674560000
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Column k=5 of A320080.

Programs

  • Mathematica
    a[n_] := Sum[5^k * k! * StirlingS1[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
    With[{nn=20},CoefficientList[Series[1/(1-5*Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, 5^k*k!*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} 5^k * k! * Stirling1(n,k).
a(0) = 1; a(n) = 5 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k).

A347023 E.g.f.: 1 / (1 - 6 * log(1 + x))^(1/6).

Original entry on oeis.org

1, 1, 6, 72, 1254, 28794, 819888, 27869316, 1101032100, 49570797780, 2505156062472, 140417898936336, 8644973807845368, 579908437058338920, 42098286646367326368, 3288252917244250703664, 274974019392668843164176, 24510436934573885695407504, 2319947117871178825560902112
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2021

Keywords

Comments

In general, for k > 1, if e.g.f. = 1 / (1 - k*log(1 + x))^(1/k), then a(n) ~ n! * exp(1/k^2) / (Gamma(1/k) * k^(1/k) * n^(1 - 1/k) * (exp(1/k) - 1)^(n + 1/k)). - Vaclav Kotesovec, Aug 14 2021

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - 6 Log[1 + x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * A008542(k).
a(n) ~ n! * exp(1/36) / (Gamma(1/6) * 6^(1/6) * n^(5/6) * (exp(1/6) - 1)^(n + 1/6)). - Vaclav Kotesovec, Aug 14 2021

A365601 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(2/5).

Original entry on oeis.org

1, 2, 12, 130, 1990, 39500, 962540, 27807120, 928991280, 35233882320, 1495508048160, 70233555485520, 3615667144284720, 202470393271792800, 12252576455326384800, 796817209624497196800, 55418456683474326892800, 4104671046431448576787200
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+2)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (5 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k).
Showing 1-7 of 7 results.