A367700
Number of degree 2 vertices in the n-Menger sponge graph.
Original entry on oeis.org
12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 12.
-
LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
-
def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023
A367701
Number of degree 3 vertices in the n-Menger sponge graph.
Original entry on oeis.org
8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 8.
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Menger Sponge Graph.
- Index entries for linear recurrences with constant coefficients, signature (32,-275,724,-480).
-
LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
-
def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023
A367706
Number of degree 5 vertices in the n-Menger sponge graph.
Original entry on oeis.org
0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 0.
-
LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
-
def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023
A367707
Number of degree 6 vertices in the n-Menger sponge graph.
Original entry on oeis.org
0, 8, 456, 14312, 338376, 7218536, 148082760, 2991665384, 60074332872, 1203417692264, 24083810625864, 481799892270056, 9636987359949768, 192747663544965992, 3855016602355831368, 77100838700834961128, 1542020827252644619464, 30840448970959051746920, 616809238826486098348872
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 0.
-
LinearRecurrence[{32,-275,724,-480},{0,8,456,14312},25] (* Paolo Xausa, Nov 29 2023 *)
-
def A367707(n): return ((5**(n+1)<<(n<<1)+1)-(51<<(3*n+1))+(3**(n+3)<<4))//85-8 # Chai Wah Wu, Nov 28 2023
A365603
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(4/5).
Original entry on oeis.org
1, 4, 32, 404, 6924, 150000, 3927480, 120582360, 4246964280, 168767136000, 7468938047520, 364284571992480, 19412919898230240, 1122216138563359680, 69941868616009932480, 4675040053248335097600, 333605090142406849939200, 25312518953112479346316800
Offset: 0
-
a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*stirling(n, k, 1));
A365604
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x)).
Original entry on oeis.org
1, 5, 45, 610, 11020, 248870, 6744350, 213233400, 7704814200, 313199930400, 14146162064400, 702826758144000, 38093116667766000, 2236695336601458000, 141433354184701746000, 9582086196220281456000, 692463727252196674560000
Offset: 0
-
a[n_] := Sum[5^k * k! * StirlingS1[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
With[{nn=20},CoefficientList[Series[1/(1-5*Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2025 *)
-
a(n) = sum(k=0, n, 5^k*k!*stirling(n, k, 1));
A365601
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(2/5).
Original entry on oeis.org
1, 2, 12, 130, 1990, 39500, 962540, 27807120, 928991280, 35233882320, 1495508048160, 70233555485520, 3615667144284720, 202470393271792800, 12252576455326384800, 796817209624497196800, 55418456683474326892800, 4104671046431448576787200
Offset: 0
-
a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*stirling(n, k, 1));
Showing 1-7 of 7 results.
Comments