cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A367700 Number of degree 2 vertices in the n-Menger sponge graph.

Original entry on oeis.org

12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A083233, A332705 (surface area).
Cf. A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365602, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/17)*20^n + (2/5)*8^n + (216/85)*3^n.
a(n) = 20*a(n-1) - (3/5)*8^n - (72/5)*3^n.
a(n) = 20^n - A367701(n) - A367702(n) - A367706(n) - A367707(n).
2*a(n) = 2*A291066(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x*(1 - 25*x + 120*x^2)/((1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367701 Number of degree 3 vertices in the n-Menger sponge graph.

Original entry on oeis.org

8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (24/85)*20^n + (6/5)*8^n - (432/85)*3^n + 8.
a(n) = 20*a(n-1) - (9/5)*8^n + (144/5)*3^n - 152.
a(n) = 20^n - A367700(n) - A367702(n) - A367706(n) - A367707(n).
3*a(n) = 2*A291066(n) - 2*A367700(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 8*x*(1 - 13*x + 10*x^2 - 264*x^3)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367706 Number of degree 5 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (14/85)*20^n + (2/5)*8^n - (864/85)*3^n + 24.
a(n) = 20*a(n-1) - (3/5)*8^n + (288/5)*3^n - 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367707(n).
5*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 6*A367707(n).
G.f.: 24*x^2*(1 + 21*x - 288*x^2)/((1 - x)*(1- 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367707 Number of degree 6 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 8, 456, 14312, 338376, 7218536, 148082760, 2991665384, 60074332872, 1203417692264, 24083810625864, 481799892270056, 9636987359949768, 192747663544965992, 3855016602355831368, 77100838700834961128, 1542020827252644619464, 30840448970959051746920, 616809238826486098348872
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,8,456,14312},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367707(n): return ((5**(n+1)<<(n<<1)+1)-(51<<(3*n+1))+(3**(n+3)<<4))//85-8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (2/17)*20^n - (6/5)*8^n + (432/85)*3^n - 8.
a(n) = 20*a(n-1) + (9/5)*8^n - (144/5)*3^n + 152.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367706(n).
6*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n).
G.f.: 8*x^2*(1 + 25*x + 240*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A365603 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(4/5).

Original entry on oeis.org

1, 4, 32, 404, 6924, 150000, 3927480, 120582360, 4246964280, 168767136000, 7468938047520, 364284571992480, 19412919898230240, 1122216138563359680, 69941868616009932480, 4675040053248335097600, 333605090142406849939200, 25312518953112479346316800
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+4)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (5 - k/n) * (k-1)! * binomial(n,k) * a(n-k).

A365604 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x)).

Original entry on oeis.org

1, 5, 45, 610, 11020, 248870, 6744350, 213233400, 7704814200, 313199930400, 14146162064400, 702826758144000, 38093116667766000, 2236695336601458000, 141433354184701746000, 9582086196220281456000, 692463727252196674560000
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Column k=5 of A320080.

Programs

  • Mathematica
    a[n_] := Sum[5^k * k! * StirlingS1[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
    With[{nn=20},CoefficientList[Series[1/(1-5*Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, 5^k*k!*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} 5^k * k! * Stirling1(n,k).
a(0) = 1; a(n) = 5 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k).

A365601 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(2/5).

Original entry on oeis.org

1, 2, 12, 130, 1990, 39500, 962540, 27807120, 928991280, 35233882320, 1495508048160, 70233555485520, 3615667144284720, 202470393271792800, 12252576455326384800, 796817209624497196800, 55418456683474326892800, 4104671046431448576787200
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+2)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (5 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k).
Showing 1-7 of 7 results.