A347153 Sum of all divisors, except the largest of every number, of the first n odd numbers.
0, 1, 2, 3, 7, 8, 9, 18, 19, 20, 31, 32, 38, 51, 52, 53, 68, 81, 82, 99, 100, 101, 134, 135, 143, 164, 165, 182, 205, 206, 207, 248, 267, 268, 295, 296, 297, 346, 365, 366, 406, 407, 430, 463, 464, 485, 520, 545, 546, 603, 604, 605, 692, 693, 694, 735, 736, 765, 830, 855
Offset: 1
Crossrefs
Programs
-
Mathematica
s[n_] := DivisorSigma[1, 2*n - 1] - 2*n + 1; Accumulate @ Array[s, 100] (* Amiram Eldar, Aug 20 2021 *)
-
PARI
a(n) = sum(k=1, n, k = 2*k-1; sigma(k)-k); \\ Michel Marcus, Aug 20 2021
-
Python
from sympy import divisors from itertools import accumulate def A346877(n): return sum(divisors(2*n-1)[:-1]) def aupton(nn): return list(accumulate(A346877(n) for n in range(1, nn+1))) print(aupton(60)) # Michael S. Branicky, Aug 20 2021
Formula
G.f.: (1/(1 - x)) * Sum_{k>=0} (2*k + 1) * x^(3*k + 2) / (1 - x^(2*k + 1)). - Ilya Gutkovskiy, Aug 20 2021
a(n) = (Pi^2/8 - 1)*n^2 + O(n*log(n)). - Amiram Eldar, Mar 21 2024
Comments