cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347153 Sum of all divisors, except the largest of every number, of the first n odd numbers.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 9, 18, 19, 20, 31, 32, 38, 51, 52, 53, 68, 81, 82, 99, 100, 101, 134, 135, 143, 164, 165, 182, 205, 206, 207, 248, 267, 268, 295, 296, 297, 346, 365, 366, 406, 407, 430, 463, 464, 485, 520, 545, 546, 603, 604, 605, 692, 693, 694, 735, 736, 765, 830, 855
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2021

Keywords

Comments

Sum of all aliquot divisors (or aliquot parts) of the first n odd numbers.
Partial sums of the odd-indexed terms of A001065.
a(n) has a symmetric representation.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, 2*n - 1] - 2*n + 1; Accumulate @ Array[s, 100] (* Amiram Eldar, Aug 20 2021 *)
  • PARI
    a(n) = sum(k=1, n, k = 2*k-1; sigma(k)-k); \\ Michel Marcus, Aug 20 2021
  • Python
    from sympy import divisors
    from itertools import accumulate
    def A346877(n): return sum(divisors(2*n-1)[:-1])
    def aupton(nn): return list(accumulate(A346877(n) for n in range(1, nn+1)))
    print(aupton(60)) # Michael S. Branicky, Aug 20 2021
    

Formula

a(n) = A001477(n-1) + A346869(n).
G.f.: (1/(1 - x)) * Sum_{k>=0} (2*k + 1) * x^(3*k + 2) / (1 - x^(2*k + 1)). - Ilya Gutkovskiy, Aug 20 2021
a(n) = (Pi^2/8 - 1)*n^2 + O(n*log(n)). - Amiram Eldar, Mar 21 2024