cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347589 Continued fraction for Sum_{k>=0} 1/2^(3^k).

Original entry on oeis.org

0, 1, 1, 1, 2, 7, 1, 1, 1, 1, 1, 511, 2, 1, 1, 1, 7, 2, 1, 1, 1, 134217727, 2, 1, 2, 7, 1, 1, 1, 2, 511, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1, 2417851639229258349412351, 2, 1, 2, 7, 1, 1, 1, 1, 1, 511, 2, 1, 1, 1, 7, 2, 1, 2, 134217727, 1, 1, 1, 2, 7, 1, 1, 1, 2, 511, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1
Offset: 0

Views

Author

Benoit Cloitre, Sep 11 2021

Keywords

Crossrefs

Cf. A007400.

Programs

  • Mathematica
    ContinuedFraction[N[Sum[1/2^(3^k),{k,0,Infinity}],250]] (* Stefano Spezia, Sep 11 2021 *)
  • PARI
    my(v=contfrac(suminf(k=0, 1/2^(3^k)))); Vec(v, #v-1) \\ Michel Marcus, Sep 11 2021 and Sep 30 2024

Formula

a(5*2^k+2) = 2^(3^(k+1)) - 1. Other terms are obtained by symmetry around (5*2^k,5*2^k+1,5*2^k+2,5*2^k+3). For instance 1, 1, 1, 2, 7, 1, 1, 1, (1, 1, 511, 2), 1, 1, 1, 7, 2, 1, 1, 1.