A347806 Expansion of (theta_3(x) - 1)^3 / (4 * (3 - theta_3(x))).
1, 1, 1, 4, 5, 6, 10, 14, 22, 30, 41, 62, 88, 123, 173, 248, 354, 500, 710, 1006, 1427, 2024, 2867, 4066, 5767, 8176, 11591, 16436, 23301, 33032, 46832, 66396, 94137, 133461, 189209, 268252, 380315, 539190, 764431, 1083764, 1536498, 2178364, 3088363, 4378502, 6207581
Offset: 3
Keywords
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), add(( s->`if`(s>n, 0, b(n-s, max(0, t-1))))(j^2), j=1..isqrt(n))) end: a:= n-> b(n, 3): seq(a(n), n=3..47); # Alois P. Heinz, Sep 14 2021
-
Mathematica
nmax = 47; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^3/(4 (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] // Drop[#, 3] &
Formula
a(n) = Sum_{k=3..n} A337165(n,k). - Alois P. Heinz, Sep 14 2021
Comments