cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A348058 a(n) = Min {k > n : A235137(k) == n (mod k)}, or -1 if no such minimum exists.

Original entry on oeis.org

2, 3, 10, 5, 14, 7, 15, 16, 22, 11, 21, 13, 114, 156, 34, 17, 38, 19, 33, 25, 45, 23, 35, 80, 186, 228, 58, 29, 30, 31, 51, 64, 63, 76, 57, 37, 258, 2244, 55, 41, 86, 43, 69, 104, 94, 47, 65, 160, 1518, 372, 106, 53, 354, 81, 87, 624, 99, 59, 77, 61, 402
Offset: 1

Views

Author

Keywords

Comments

Conjecture: For all n, a(n) > 0.
If a(673) > 0 then a(673) > 10^10.

Crossrefs

Programs

  • Mathematica
    Giuga1[mu_][n_] := Giuga1[mu][n] =
    Mod[Sum[PowerMod[i, EulerPhi[n], n], {i, 1, n}] - mu, n] == 0;
    A348058[n_] := A348058[n] =
    {Clear[ww];  Do[If[Giuga1[n][i], ww = i; Break[]], {i, n + 1, 20000000}]; ww}[[1]];
    Table[A348058[n],{n,61}]
  • PARI
    a(n) = my(k=n+1); while (sum(i=1, k , Mod(i, k)^eulerphi(k)) != n, k++); k; \\ Michel Marcus, Sep 28 2021

A346551 3-Sondow numbers: numbers k such that p^s divides k/p + 3 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 10, 18, 126, 5418, 141174, 6643507266, 157486189806
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 3 (mod k).
A positive integer k is a 3-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 3 for every prime power divisor p^s of k.
2) 3/k + Sum_{prime p|k} 1/p is an integer.
3) 3 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 3 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[1000000],Sondow[3][#]&]

Extensions

a(8)-a(9) from Martin Ehrenstein, Dec 31 2021

A346552 4-Sondow numbers: numbers k such that p^s divides k/p + 4 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 5, 8, 24, 168, 7224, 188232, 8858009688, 209981586408
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 4 (mod k).
A positive integer k is a 4-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 4 for every prime power divisor p^s of k.
2) 4/k + Sum_{prime p|k} 1/p is an integer.
3) 4 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 4 (mod k).
Other numbers in the sequence: 8858009688, 209981586408, 33961686334238753642827085044344

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[4][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 4) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(8)-a(9) verified by Martin Ehrenstein, Jan 21 2022

A346553 5-Sondow numbers: numbers k such that p^s divides k/p + 5 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 3, 14, 66, 1974, 307146, 3270666, 42404405538, 318501038226
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 5 (mod k).
A positive integer k is a 5-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 5 for every prime power divisor p^s of k.
2) 5/k + Sum_{prime p|k} 1/p is an integer.
3) 5 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 5 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
    Select[Range[10^7], Sondow[5][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 5) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(9)-a(10) from Martin Ehrenstein, Jan 19 2022

A346554 6-Sondow numbers: numbers k such that p^s divides k/p + 6 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 4, 7, 9, 20, 36, 252, 10836, 282348, 13287014532, 314972379612
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 6 (mod k).
A positive integer k is a 6-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 6 for every prime power divisor p^s of k.
2) 6/k + Sum_{prime p|k} 1/p is an integer.
3) 6 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 6 (mod k).
Other numbers in the sequence: 13287014532, 314972379612, 50942529501358130464240627566516

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[6][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 6) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(10)-a(11) verified by Martin Ehrenstein, Jan 21 2022

A346555 7-Sondow numbers: numbers k such that p^s divides k/p + 7 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 6, 15, 78, 294, 12642, 539026980558
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 7 (mod k).
A positive integer k is a 7-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 7 for every prime power divisor p^s of k.
2) 7/k + Sum_{prime p|k} 1/p is an integer.
3) 7 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 7 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, this sequence, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[7][#]&]

Extensions

a(8) from Martin Ehrenstein, Feb 04 2022

A346556 8-Sondow numbers: numbers k such that p^s divides k/p + 8 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 3, 16, 48, 336, 14448, 376464, 17716019376, 419963172816
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 8 (mod k).
A positive integer k is a 8-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 8 for every prime power divisor p^s of k.
2) 8/k + Sum_{prime p|k} 1/p is an integer.
3) 8 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 8 (mod k).
Other numbers in the sequence: 17716019376, 419963172816, 67923372668477507285654170088688

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, this sequence, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[400000],Sondow[8][#]&]

Extensions

a(8)-a(9) verified by Martin Ehrenstein, Feb 04 2022

A346557 9-Sondow numbers: numbers k such that p^s divides k/p + 9 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 5, 22, 54, 378, 16254, 423522, 19930521798, 472458569418
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 9 (mod k).
A positive integer k is a 9-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 9 for every prime power divisor p^s of k.
2) 9/k + Sum_{prime p|k} 1/p is an integer.
3) 9 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 9 (mod k).
Other numbers in the sequence: 19930521798, 472458569418, 76413794252037195696360941349774

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, this sequence.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[1000000],Sondow[9][#]&]

Extensions

a(9)-a(10) verified by Martin Ehrenstein, Feb 04 2022

A349193 1-Sondow numbers: numbers j such that p divides j/p + 1 for every prime divisor p of j.

Original entry on oeis.org

1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

These are the weak primary pseudoperfect numbers mentioned in Grau-Oller-Sondow (2013).
Includes the primary pseudoperfect numbers (A054377). Any weak primary pseudoperfect number which is not a primary pseudoperfect number must have more than 58 distinct prime factors, and therefore must be greater than 10^110; none are known.
A positive integer j is a k-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides j/p + k for every prime power divisor p^s of j.
2) k/j + Sum_{prime p|j} 1/p is an integer.
3) k + Sum_{prime p|j} j/p == 0 (mod j).
4) Sum_{i=1..j} i^A000010(j) == k (mod j).
Numbers m such that A235137(m) == 1 (mod m).

Crossrefs

(-1) and (-2)-Sondow numbers: A326715, A330069.
2-Sondow to 9-Sondow numbers: A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]];
    Select[Range[100000],Sondow[1][#]&]
Showing 1-9 of 9 results.