cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348329 Numbers k such that k' = k'', where ' is the arithmetic derivative.

Original entry on oeis.org

0, 1, 4, 27, 3125, 823543, 1647082, 2238771
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 12 2021

Keywords

Comments

For n > 2, a(n) is such that a(n)' = p^p for some prime p. So A051674 is a subsequence. - David A. Corneth, Oct 13 2021
If p > 2 and p^p-2 are both primes (i.e., p is an odd prime term of A100408), then 2*(p^p-2) is a term. Terms of this type are 1647082 and 3956839311320627178247954, corresponding to p = 7 and 19 respectively. - Amiram Eldar, Oct 13 2021

Crossrefs

Programs

  • Maple
    isA348329 := proc(n)
        local d ;
        d := A003415(n) ;
        if A003415(d) = d then
            true ;
        else
            false;
        end if;
    end proc:
    for n from 0 do
        if isA348329(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Oct 19 2021
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 2.5*10^6], d[#] == d[d[#]] &] (* Amiram Eldar, Oct 13 2021 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(k) = ad(k) == ad(ad(k)); \\ Michel Marcus, Oct 18 2021
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def ad(n): return 0 if n<2 else sum(n*e//p for p, e in factorint(n).items())
    def agen(): yield from (k for k in count(0) if (adk:=ad(k)) == ad(adk))
    print(list(islice(agen(), 5))) # Michael S. Branicky, Oct 12 2022

Formula

Numbers k such that A003415(k) = A068346(k).