A346627
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * A(x)^3.
Original entry on oeis.org
1, 0, 1, 2, 7, 23, 82, 300, 1129, 4334, 16914, 66899, 267586, 1080516, 4398850, 18035084, 74402361, 308624282, 1286428765, 5385578256, 22635057148, 95471113565, 403983783772, 1714494024947, 7295949019114, 31124885587680, 133085594104222, 570266646942488
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = 1/(1 + x) + x A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = (-1)^n + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 27}]
Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 27}]
A349299
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^3)).
Original entry on oeis.org
1, 0, 1, 3, 13, 57, 265, 1273, 6281, 31634, 161985, 840795, 4413937, 23395376, 125028541, 672958929, 3644868105, 19850452482, 108639736105, 597190462341, 3295737021241, 18253432801480, 101425665527825, 565249069709027, 3158734991846065
Offset: 0
-
nmax = 24; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^3)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 2 k, 3 k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 24}]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n+2*k,3*k) * binomial(4*k,k) / (3*k+1)); \\ Michel Marcus, Nov 14 2021
A349300
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^4)).
Original entry on oeis.org
1, 0, 1, 4, 21, 114, 651, 3844, 23301, 144169, 906866, 5782350, 37289431, 242793439, 1593918916, 10538988984, 70121101825, 469133993094, 3154115695476, 21299373321344, 144402246424591, 982506791975780, 6706724412165956, 45917245477282994
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 23}]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021
A349301
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^5)).
Original entry on oeis.org
1, 0, 1, 5, 31, 200, 1351, 9430, 67531, 493505, 3665981, 27602081, 210179437, 1615820402, 12524590873, 97775503808, 768083233899, 6067097140799, 48159634951855, 383965003803985, 3073379977522321, 24688458872260007, 198968304164411309
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^5)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 4 k, 5 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 22}]
A349302
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^6)).
Original entry on oeis.org
1, 0, 1, 6, 43, 321, 2500, 20096, 165621, 1392397, 11896823, 103014141, 902035660, 7974080834, 71070247438, 637937825112, 5761970031357, 52329993278856, 477588786637264, 4377832437503643, 40288077072190109, 372086539388626537, 3447632819399550915
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^6)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 5 k, 6 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 22}]
Showing 1-5 of 5 results.
Comments