A349583
E.g.f. satisfies: A(x) * log(A(x)) = exp(x) - 1.
Original entry on oeis.org
1, 1, 0, 2, -9, 72, -710, 8563, -121814, 1997502, -37097739, 769687954, -17644355410, 442894514285, -12081668234012, 355889274553166, -11258683640579857, 380701046875217492, -13702507978018209458, 523049811008797507683, -21105565578064063658754
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0,
(1-m)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Jul 29 2022
-
a[n_] := Sum[If[k == 1, 1, (-k + 1)^(k - 1)]*StirlingS2[n, k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Nov 23 2021 *)
-
a(n) = sum(k=0, n, (-k+1)^(k-1)*stirling(n, k, 2));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(exp(x)-1))))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x)))
A349524
a(n) = Sum_{k=0..n} (2*k+1)^(k-1) * Stirling2(n,k).
Original entry on oeis.org
1, 1, 6, 65, 1059, 23232, 642859, 21507733, 844701160, 38108248719, 1942394699283, 110401966739110, 6923805346540685, 474957822716470901, 35377953843680999326, 2843665890900123673997, 245340865605247369255751, 22614510471168438300336440, 2217985444621941684970200607
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0,
(2*m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Jul 29 2022
-
Table[Sum[(2*k+1)^(k-1)*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[Sqrt[-LambertW[2*(-E^x + 1)]/(2*(E^x - 1))], {x, 0, nmax}], x] * Range[0, nmax]!
-
a(n) = sum(k=0, n, (2*k+1)^(k-1)*stirling(n, k, 2)); \\ Seiichi Manyama, Nov 20 2021
-
N=20; x='x+O('x^N); Vec(sum(k=0, N, (2*k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Nov 20 2021
A349505
E.g.f. satisfies: A(x) = (1 + x)^(A(x)^3).
Original entry on oeis.org
1, 1, 6, 81, 1668, 46740, 1659102, 71386602, 3611376360, 210083758704, 13817649943440, 1013979735381888, 82134894774767832, 7279520816638839600, 700730732176038359208, 72803537907677356262760, 8120227815636769492383168
Offset: 0
-
nmax = 20; CoefficientList[Series[(-LambertW[-3*Log[1 + x]]/(3*Log[1 + x]))^(1/3), {x, 0, nmax}], x]*Range[0, nmax]! (* Vaclav Kotesovec, Nov 20 2021 *)
-
a(n) = sum(k=0, n, (3*k+1)^(k-1)*stirling(n, k, 1));
-
N=20; x='x+O('x^N); Vec(serlaplace(sum(k=0, N, (3*k+1)^(k-1)*log(1+x)^k/k!)))
A349683
E.g.f. satisfies: log(A(x)) = exp(x*A(x)^3) - 1.
Original entry on oeis.org
1, 1, 8, 131, 3303, 113137, 4909829, 258275887, 15974450676, 1136164798581, 91366516437475, 8197719659916195, 811910298234609913, 87984131560596043801, 10355660409438349522396, 1315550191540192189444535, 179413108433279983993509731
Offset: 0
-
nterms=20;Table[Sum[(3n+1)^(k-1)*StirlingS2[n,k],{k,0,n}],{n,0,nterms-1}] (* Paolo Xausa, Nov 25 2021 *)
-
a(n) = sum(k=0, n, (3*n+1)^(k-1)*stirling(n, k, 2));
A349528
a(n) = Sum_{k=0..n} (-1)^(n-k) * (3*k+1)^(k-1) * Stirling2(n,k).
Original entry on oeis.org
1, 1, 6, 80, 1645, 45962, 1627080, 69817575, 3522349232, 204343964292, 13403304111515, 980876342339456, 79235384391436316, 7003257362607771709, 672285536392973397658, 69656231091367157111844, 7747832754070176901631621
Offset: 0
-
a[n_] := Sum[(-1)^(n - k)*(3*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Nov 21 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*(3*k+1)^(k-1)*stirling(n, k, 2));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(3*(exp(-x)-1))/3)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (3*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))
A357336
E.g.f. satisfies A(x) = (exp(x) - 1) * exp(3 * A(x)).
Original entry on oeis.org
0, 1, 7, 100, 2257, 70021, 2768740, 133164109, 7546722487, 492531820066, 36381833190223, 3000677194970137, 273342303933512362, 27256107730344331879, 2952882035628632383975, 345384835617231362018764, 43378466647737203462409829, 5822506028894124326533926193
Offset: 0
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(3*(1-exp(x)))/3)))
-
a(n) = sum(k=1, n, (3*k)^(k-1)*stirling(n, k, 2));
A367201
E.g.f. satisfies log(A(x)) = (exp(x*A(x)) - 1) * A(x)^3.
Original entry on oeis.org
1, 1, 10, 200, 6167, 258607, 13748744, 886397829, 67211684890, 5861684458896, 578088714806497, 63617223837958309, 7728596914020856162, 1027393177458209939977, 148344954037140113652010, 23119776330887635387231580, 3868359765874829925197165527
Offset: 0
-
a(n) = sum(k=0, n, (n+3*k+1)^(k-1)*stirling(n, k, 2));
A356199
a(n) = Sum_{k=0..n} (n*k+1)^(k-1) * Stirling2(n,k).
Original entry on oeis.org
1, 1, 6, 122, 5991, 556152, 84245291, 18956006323, 5940695613628, 2474958812797662, 1323229303771318595, 883245295259143164922, 719968321620942410875645, 703829776430361739799683993, 812798413118207226439408790038, 1094718407894086754989907938078190
Offset: 0
-
b:= proc(n, k, m) option remember; `if`(n=0,
(k*m+1)^(m-1), m*b(n-1, k, m)+b(n-1, k, m+1))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..19);
-
b[n_, k_, m_] := b[n, k, m] = If[n == 0,
(k*m+1)^(m-1), m*b[n-1, k, m] + b[n-1, k, m+1]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 14 2023, after Alois P. Heinz *)
-
a(n) = sum(k=0, n, (n*k+1)^(k-1) * stirling(n, k, 2)); \\ Michel Marcus, Aug 04 2022
Showing 1-8 of 8 results.