cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376791 Expansion of 1/sqrt((1 - x^3)^2 - 4*x).

Original entry on oeis.org

1, 2, 6, 21, 76, 282, 1065, 4074, 15732, 61193, 239406, 941064, 3713701, 14703896, 58383138, 232383841, 926943678, 3704410890, 14828984641, 59450138412, 238659074286, 959247218253, 3859777477944, 15546444564846, 62675854384977, 252893414725842, 1021208266423260
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,1),(3,3).
Diagonal of the rational function 1 / (1 - x - y - x^3*y^3). (End)

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x^3)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k, k)*binomial(2*n-6*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,k) * binomial(2*n-6*k,n-3*k).

A376792 Expansion of 1/sqrt((1 - x^4)^2 - 4*x).

Original entry on oeis.org

1, 2, 6, 20, 71, 258, 954, 3572, 13501, 51404, 196858, 757472, 2926097, 11341032, 44080770, 171755976, 670664951, 2623732322, 10281616176, 40350944112, 158573538071, 623930435834, 2457658576132, 9690467310480, 38244489565051, 151064227161784, 597165099484632
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,1),(4,4).
Diagonal of the rational function 1 / (1 - x - y - x^4*y^4). (End)

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x^4)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-7*k, k)*binomial(2*n-8*k, n-4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-7*k,k) * binomial(2*n-8*k,n-4*k).

A376810 Expansion of 1/sqrt(1 - 4*x/(1 - x^2)^2).

Original entry on oeis.org

1, 2, 6, 24, 94, 378, 1544, 6380, 26598, 111658, 471358, 1998924, 8509368, 36341278, 155634228, 668116136, 2874157222, 12387209982, 53475080494, 231189987224, 1000834283190, 4337864724462, 18821884379924, 81748960355484, 355383570351664, 1546239230878154
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^2)^2))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n-3*k-1, k)*binomial(2*n-4*k, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1,k) * binomial(2*n-4*k,n-2*k).

A383552 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(2,2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 12, 12, 5, 1, 1, 6, 18, 26, 18, 6, 1, 1, 7, 25, 47, 47, 25, 7, 1, 1, 8, 33, 76, 101, 76, 33, 8, 1, 1, 9, 42, 114, 189, 189, 114, 42, 9, 1, 1, 10, 52, 162, 321, 404, 321, 162, 52, 10, 1, 1, 11, 63, 221, 508, 772, 772, 508, 221, 63, 11, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,   1,   1,    1, ...
  1, 2,  3,   4,   5,   6,    7, ...
  1, 3,  7,  12,  18,  25,   33, ...
  1, 4, 12,  26,  47,  76,  114, ...
  1, 5, 18,  47, 101, 189,  321, ...
  1, 6, 25,  76, 189, 404,  772, ...
  1, 7, 33, 114, 321, 772, 1645, ...
		

Crossrefs

Main diagonal gives A349713.

Programs

  • PARI
    a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^2*y^2), n), k);

Formula

A(n,k) = A(k,n).
A(n,k) = A(n-1,k) + A(n,k-1) + A(n-2,k-2).
G.f.: 1 / (1 - x - y - x^2*y^2).
Showing 1-4 of 4 results.