A350132 a(n) is the smallest number m such that tau(m-1) = tau(m+1) = tau(m)^n, where tau(m) is the number of divisors of m (A000005).
34, 7, 41, 919, 18089, 446081, 27033161, 663929729, 74335064959, 6132592231039
Offset: 1
Examples
34 is the 1st term of A169834, so a(1) = 34.
Programs
-
Magma
Ax:=func
; [Ax(n): n in [1..6]]; -
PARI
isok(m, n) = my(nd1=numdiv(m-1)); (nd1 == numdiv(m)^n) && (nd1 == numdiv(m+1)); a(n) = {my(m=2); while (!isok(m, n), m++); m;} \\ Michel Marcus, Dec 16 2021
Extensions
a(8) from Jon E. Schoenfield and David A. Corneth, Dec 15 2021
a(9) from David A. Corneth and Martin Ehrenstein, Jan 14 2022
a(10) verified by Martin Ehrenstein, Jan 21 2022
Comments