A350405 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such number exists.
37, 142, 285, 536, 911, 1268, 1909, 2713, 3876, 5179, 6891, 8901, 11190, 14384, 18087, 21697, 27055, 32166, 39111, 46560, 53892, 64412, 73949, 86778, 98202, 113635, 130088, 148051, 167505, 190968, 214955, 240143, 269775, 297615, 331201, 367429, 409179, 451340, 497830
Offset: 3
Keywords
Examples
For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
Links
- David A. Corneth, Table of n, a(n) for n = 3..102
- Eric Weisstein's World of Mathematics, Polygonal Number
Programs
-
Mathematica
Do[i=1;While[b=PolygonalNumber[n,Range@i++];!IntegerQ[t=Min[First/@Select[Tally[Select[Total/@Subsets[b,{n}],#<=Max@b&]],Last@#==n&]]]];Print@t,{n,3,10}] (* Giorgos Kalogeropoulos, Dec 30 2021 *)
Formula
a(n) >= A006484(n). - David A. Corneth, Dec 30 2021
Extensions
a(10)-a(31) from Michael S. Branicky, Dec 29 2021
More terms from David A. Corneth, Dec 30 2021
Comments