cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350248 Triangle read by rows: T(n,k) is the number of noncrossing partitions of an n-set into k blocks of size 3 or more, n >= 0, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 3, 0, 1, 7, 0, 1, 12, 0, 1, 18, 12, 0, 1, 25, 45, 0, 1, 33, 110, 0, 1, 42, 220, 55, 0, 1, 52, 390, 286, 0, 1, 63, 637, 910, 0, 1, 75, 980, 2275, 273, 0, 1, 88, 1440, 4900, 1820, 0, 1, 102, 2040, 9520, 7140, 0, 1, 117, 2805, 17136, 21420, 1428
Offset: 0

Views

Author

Andrew Howroyd and Janaka Rodrigo, Dec 21 2021

Keywords

Examples

			Triangle begins:
  1;
  0;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1,   3;
  0, 1,   7;
  0, 1,  12;
  0, 1,  18,   12;
  0, 1,  25,   45;
  0, 1,  33,  110;
  0, 1,  42,  220,   55;
  0, 1,  52,  390,  286;
  0, 1,  63,  637,  910;
  0, 1,  75,  980, 2275,  273;
  0, 1,  88, 1440, 4900, 1820;
  0, 1, 102, 2040, 9520, 7140;
  ...
		

Crossrefs

Columns k=2..5 are A055998, A350116, A350286, A350303.
Row sums are A114997.
Cf. A001263 (blocks of any size), A108263 (blocks of size 2 or more).

Programs

  • PARI
    T(n)={my(p=1+O(x^3)); for(i=1, n\3, p=1+y*(x*p)^3/(1-x*p)); [Vecrev(t)| t<-Vec(p + O(x*x^n))]}
    {my(A=T(12)); for(i=1, #A, print(A[i]))}
    
  • PARI
    T(n,k) = if(n==0 || k>n\3, k==0, binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1)) \\ Andrew Howroyd, Dec 31 2021

Formula

G.f.: A(x,y) satisfies A(x,y) = 1 + y*(x*A(x,y))^3/(1 - x*A(x,y)).
T(n,k) = binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1) for n > 0.

A352477 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into 4 intersecting polygons.

Original entry on oeis.org

15345, 199914, 1610700, 10333050, 57958005, 297787980, 1439757200, 6662364668, 29844152321, 130445708134, 559533869356, 2365296230374, 9885290683829, 40944327268760, 168389163026240, 688631375953560, 280357073972529, 11373212442818370, 46006062638648940
Offset: 12

Views

Author

Janaka Rodrigo, Mar 17 2022

Keywords

Examples

			The set of vertices of a convex 14-gon can be partitioned into 4 polygons in 1611610 different ways:
- 3 triangles and 1 pentagon in (1/3!)*C(14,3)*C(11,3)*C(8,3)*C(5,5) = 560560 different ways, and
- 2 triangles and 2 quadrilaterals in (1/2!)*(1/2!)*C(14,3)*C(11,3)*C(8,4)*C(4,4) = 1051050 ways.
Subtracting the A350286(14-11)=910 nonintersecting partitions leaves a(14)=1610700.
		

Crossrefs

Programs

  • PARI
    a4(n) = (1/12)*(-3^(n - 2)*(n^2 + 5*n + 18) + (1/64)*(2^(2*n + 5) + 3*2^n*(n^4 + 2*n^3 + 19*n^2 + 42*n + 64) - 16*(n^6 - 9*n^5 + 43*n^4 - 91*n^3 + 112*n^2 - 32*n + 8))); \\ A261724
    a6(n) = (n*(n+1)*(n+2)*(n+9)*(n+10)*(n+11))/144; \\ A350286
    a(n) = a4(n) - a6(n-11); \\ Michel Marcus, Mar 20 2022

Formula

a(n) = A261724(n) - A350286(n - 11), n > 11.
Showing 1-2 of 2 results.