cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350421 Numbers p^2*q, p > q odd primes such that q does not divide p-1, and q does not divide p+1.

Original entry on oeis.org

245, 845, 847, 1445, 1859, 2023, 2527, 2645, 3179, 3703, 3757, 3971, 4693, 6137, 6727, 6845, 6877, 8993, 9245, 9251, 9583, 10051, 10571, 10933, 11045, 12493, 14045, 14297, 15059, 15463, 15979, 16337, 17797, 18259, 18491, 19343, 19663, 21853, 22103, 22445, 23273
Offset: 1

Views

Author

Bernard Schott, Dec 30 2021

Keywords

Comments

As odd prime q does not divide p-1 and does not divide also p+1, then q >= 5, so p >= 7.
For these terms m, there are precisely 2 groups of order m, so this is a subsequence of A054395.
The 2 groups are abelian; they are C_{p^2*q} and (C_p X C_p) X C_q, where C means cyclic groups of the stated order and the symbol X means direct product.

Examples

			245 = 7^2 * 5, 5 and 7 are odd primes, 5 does not divide 7-1 = 10 and does not divide 7+1 = 8, hence 245 is a term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Equals A350422 \ A350332.
Subsequence of A051532, A054395, A054753, A060687 and A350322.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245.

Programs

  • Magma
    f:=Factorisation; [n:n in [3..24000 ]|#PrimeDivisors(n) eq 2 and  f(n)[1][1] lt f(n)[2][1] and f(n)[1][2] eq 1 and f(n)[2][2] eq 2  and (f(n)[2][1]-1) mod f(n)[1][1] ne 0 and (f(n)[2][1]+1) mod f(n)[1][1] ne 0]; // Marius A. Burtea, Dec 30 2021
    
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && ! Or @@ Divisible[p[[2]] + {-1, 1}, p[[1]]]]; Select[Range[1, 24000, 2], q] (* Amiram Eldar, Dec 30 2021 *)
  • PARI
    isok(m) = my(f=factor(m)); if (f[, 2] == [1, 2]~, my(p=f[2, 1], q=f[1, 1]); ((p-1) % q) && ((p+1) % q)); \\ Michel Marcus, Dec 30 2021
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit**2, 3)[0]
        for p in primerange(3, maxp+1):
            pp = p*p
            for q in primerange(1, min(p, limit//pp+1)):
                if (p-1)%q != 0 and (p+1)%q != 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(24000)) # Michael S. Branicky, Dec 30 2021
    

Extensions

More terms from Marius A. Burtea and Hugo Pfoertner, Dec 30 2021