cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054753 Numbers which are the product of a prime and the square of a different prime (p^2 * q).

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452
Offset: 1

Views

Author

Henry Bottomley, Apr 25 2000

Keywords

Comments

A178254(a(n)) = 4; union of A095990 and A096156. - Reinhard Zumkeller, May 24 2010
Numbers with prime signature (2,1) = union of numbers with ordered prime signature (1,2) and numbers with ordered prime signature (2,1) (restating second part of above comment). - Daniel Forgues, Feb 05 2011
A056595(a(n)) = 4. - Reinhard Zumkeller, Aug 15 2011
For k>1, Sum_{n>=1} 1/a(n)^k = P(k) * P(2*k) - P(3*k), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 27 2012
Also numbers n with A001222(n)=3 and A001221(n)=2. - Enrique Pérez Herrero, Jun 27 2012
A089233(a(n)) = 2. - Reinhard Zumkeller, Sep 04 2013
Subsequence of the triprimes (A014612). If a(n) is even, then a(n)/2 is semiprime (A001358). - Wesley Ivan Hurt, Sep 08 2013
From Bernard Schott, Sep 16 2017: (Start)
These numbers are called "Nombres d'Einstein" on the French site "Diophante" (see link) because a(n) = m * c^2 where m and c are two different primes.
The numbers 44 = 2^2 * 11 and 45 = 3^2 * 5 are the two smallest consecutive "Einstein numbers"; 603, 604, 605 are the three smallest consecutive integers in this sequence. It's not possible to get more than five such consecutive numbers (proof in the link); the first set of five such consecutive numbers begins at the 17-digit number 10093613546512321. Where does the first sequence of four consecutive "Einstein numbers" begin? (End) [corrected by Jon E. Schoenfield, Sep 20 2017]
The first set of four consecutive integers in this sequence begins at the 11-digit number 17042641441. (Each such set must include two even numbers, one of which is of the form 2^2*q, the other of the form p^2*2; a quick search, taking the factorizations of consecutive integers before and after numbers of the latter form, shows that the number of sets of four consecutive k-digit integers in this sequence is 1, 7, 12, 18 for k = 11, 12, 13, 14, respectively.) - Jon E. Schoenfield, Sep 16 2017
The first 13 sets of 5 consecutive integers in this sequence have as their first terms 10093613546512321, 14414905793929921, 266667848769941521, 562672865058083521, 1579571757660876721, 1841337567664174321, 2737837351207392721, 4456162869973433521, 4683238426747860721, 4993613853242910721, 5037980611623036721, 5174116847290255921, 5344962129269790721. Each of these numbers except for the last is 7^2 times a prime; the last is 23^2 times a prime. - Jon E. Schoenfield, Sep 17 2017

Examples

			a(1) = 12 because 12 = 2^2*3 is the smallest number of the form p^2*q.
		

Crossrefs

Numbers with 6 divisors (A030515) which are not 5th powers of primes (A050997).
Subsequence of A325241. Supersequence of A096156.
Table giving for each subsequence the corresponding number of groups of order p^2*q, from Bernard Schott, Jan 23 2022
-------------------------------------------------------------------------------
| Subsequence | A350638 | A143928 | A350115 | A349495 | A350245 | A350422 (*)|
-------------------------------------------------------------------------------
|A000001(p^2*q)| (q+9)/2 | 5 | 5 | 4 | 3 | 2 |
-------------------------------------------------------------------------------
(*) A350422 equals disjoint union of A350332 (pA350421 (p>q).

Programs

  • Mathematica
    Select[Range[12,452], {1,2}==Sort[Last/@FactorInteger[ # ]]&] (* Zak Seidov, Jul 19 2009 *)
    With[{nn=60},Take[Union[Flatten[{#[[1]]#[[2]]^2,#[[1]]^2 #[[2]]}&/@ Subsets[ Prime[Range[nn]],{2}]]],nn]] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    is(n)=vecsort(factor(n)[,2])==[1,2]~ \\ Charles R Greathouse IV, Dec 30 2014
    
  • PARI
    for(n=1, 1e3, if(numdiv(n) - bigomega(n) == 3, print1(n, ", "))) \\ Altug Alkan, Nov 24 2015
    
  • Python
    from sympy import factorint
    def ok(n): return sorted(factorint(n).values()) == [1, 2]
    print([k for k in range(453) if ok(k)]) # Michael S. Branicky, Dec 18 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A054753(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**2) for p in primerange(isqrt(x)+1))+primepi(integer_nthroot(x,3)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Extensions

Link added and incorrect Mathematica code removed by David Bevan, Sep 17 2011

A350422 Numbers of the form m = p^2*q for which there exist exactly 2 groups of order m.

Original entry on oeis.org

45, 99, 153, 175, 207, 245, 261, 325, 369, 423, 425, 475, 477, 531, 539, 575, 637, 639, 725, 747, 801, 833, 845, 847, 909, 925, 931, 963, 1017, 1075, 1127, 1175, 1179, 1233, 1325, 1341, 1445, 1475, 1503, 1519, 1557, 1573, 1611, 1675, 1719, 1773, 1813, 1825, 1859, 1975, 2009
Offset: 1

Views

Author

Bernard Schott, Jan 03 2022

Keywords

Comments

Terms come from the union of terms of the form p^2*q with p < q in A350332 and terms of the same form with p > q in A350421, with p, q odd primes.
All terms are odd.
These 2 groups are abelian; they are C_{p^2*q} and (C_p X C_p) X C_q, where C means cyclic groups of the stated order and the symbol X means direct product.

Examples

			With p < q: 175 = 5^2 * 7, 5 and 7 are odd primes and 5 does not divide 7-1 = 6, hence 175 is a term (see A350332).
With p > q: 245 = 7^2 * 5, 5 and 7 are odd primes, 5 does not divide 7-1 = 6 and does not divide 7+1 = 8, hence 245 is a term (see A350421).
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Disjoint union of A350332 (pA350421 (p>q).
Intersection of A054395 and A054753.
Subsequence of A051532, A060687 and A350322.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245, A350638.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; (e == {1, 2} && ! Or @@ Divisible[p[[2]] + {-1, 1}, p[[1]]]) || (e == {2, 1} && ! Divisible[p[[2]] - 1, p[[1]]])]; Select[Range[1, 2000, 2], q] (* Amiram Eldar, Jan 03 2022 *)
  • PARI
    isoka(f) = if (f[, 2] == [2, 1]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p)); \\ A350332
    isokb(f) = if (f[, 2] == [1, 2]~, my(p=f[2, 1], q=f[1, 1]); ((p-1) % q) && ((p+1) % q)); \\ A350421
    isok(m) = my(f=factor(m)); isoka(f) || isokb(f); \\ Michel Marcus, Jan 09 2022

A350638 Numbers of the form p^2*q, with odd primes p > q, such that q divides p-1.

Original entry on oeis.org

147, 507, 605, 1083, 2883, 4107, 4805, 5547, 5819, 5887, 8405, 11163, 12943, 13467, 15987, 18605, 18723, 25205, 28227, 31827, 35287, 35643, 36517, 48387, 49379, 50807, 51005, 57963, 68403, 73947, 79707, 81133, 85805, 87131, 89383, 98283, 100949, 111747, 112903
Offset: 1

Views

Author

Bernard Schott, Jan 10 2022

Keywords

Comments

For these terms m there are precisely (q+9)/2 groups of order m.
Only two of these groups are abelian: C_{p^2*q} and (C_p X C_p) X C_q. The (q+5)/2 groups that are nonabelian are C_{p^2} : C_q and the (q+3)/2 semidirect products of the form (C_p X C_p) : C_q that are not isomorphic, where C means cyclic groups of the stated order, the symbols X and : mean direct and semidirect products respectively.

Examples

			147 = 7^2 * 3, 3 and 7 are odd primes, 3 divides 7-1 = 6, hence 147 is a term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245, A350332, A350421, A350422.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[1, 120000, 2], q] (* Amiram Eldar, Jan 11 2022 *)
  • PARI
    isok(m) = if (m%2, my(f=factor(m)); if (f[, 2] == [1, 2]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p) == 0)); \\ Michel Marcus, Jan 11 2022
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit**2, 3)[0]
        for p in primerange(5, maxp+1):
            pp = p*p
            for q in primerange(3, min(p, limit//pp+1)):
                if (p-1)%q == 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(113000)) # Michael S. Branicky, Jan 10 2022
    

Extensions

More terms from Michael S. Branicky, Jan 10 2022
Showing 1-3 of 3 results.