cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350425 Records of the number of semiprime divisors corresponding to A350424.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 21, 22, 23, 28, 29, 30, 36, 37, 38, 45, 46, 47, 48, 55, 56, 57, 58, 66, 67, 68, 69, 78, 79, 80, 81, 91, 92, 93, 94, 105, 106, 107, 108, 120, 121, 122, 123, 136, 137, 138, 139, 153, 154, 155, 156, 171, 172, 173, 174, 190, 191, 192, 193, 210
Offset: 1

Views

Author

Hugo Pfoertner, Dec 30 2021

Keywords

Crossrefs

A350424 gives the numbers setting the records.
Cf. A220264.

A355772 Positions of records in A355770.

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 195, 315, 900, 1575, 2100, 3900, 6300, 18900, 25200, 27300, 31500, 44100, 81900, 220500, 245700, 333900, 409500, 491400, 573300, 600600, 1201200, 2402400, 3603600, 4804800, 7207200, 10810800, 14414400, 20420400, 21621600, 40840800, 43243200
Offset: 1

Views

Author

Bernard Schott, Jul 18 2022

Keywords

Comments

Corresponding records are 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, ...

Examples

			a(5) = 45 is in the sequence because A355770(45) = 5 is larger than any earlier value in A355770.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; f[n_] := DivisorSum[n, 1 &, q[#] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 18 2022 *)
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen(record=-1):
        for k in count(1):
            if f(k) > record: record = f(k); yield k
    print(list(islice(agen(), 20))) # Michael S. Branicky, Jul 25 2022

Extensions

a(21)-a(31) from Michel Marcus, Jul 18 2022
a(32)-a(37) from Amiram Eldar, Jul 18 2022
Showing 1-2 of 2 results.