cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350878 Integers m that divide the sum of values d*p < m, where d is a divisor of m, p is a prime, and d*p does not divide m.

Original entry on oeis.org

1, 2, 5, 10, 18, 24, 32, 60, 71, 100, 512, 2990, 9910, 10031, 12618, 32674, 53586, 153878, 223500, 312608, 369119, 386110, 466569, 4491817, 7068356, 8765871, 65311881
Offset: 1

Views

Author

Devansh Singh, Jan 20 2022

Keywords

Comments

Conjecture: The sum of values d*p < m in the definition of the sequence is equal to m for m = 5 only. True for m <= 15000.
A007506 is the subsequence of the prime terms of this sequence. - Amiram Eldar, Jan 20 2022
a(28) > 10^8. - David A. Corneth, Jan 21 2022

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{ds = Divisors[n], s = 0, r}, Do[r = n/d; ps = Select[Range[2, r], PrimeQ[#] && ! Divisible[n, d*#] &]; s += Total[d*ps], {d, ds}]; Divisible[s, n]]; Select[Range[3000], q] (* Amiram Eldar, Jan 20 2022 *)
  • PARI
    isok(m) = {my(d=divisors(m), s=0); forprime(p=2, m, for(k=1, #d, my(x=d[k]*p); if ((x < m) && (m % x), s+=x););); (s % m) == 0;} \\ Michel Marcus, Jan 21 2022
    
  • PARI
    \\ See Corneth link \\ David A. Corneth, Jan 21 2022
  • Python
    import sympy
    A350878=[]
    for m in range(1,15001):
        sum=0
        primes_lessthan_m_by2 = list(sympy.primerange(2,-(m//-2)))
        primes_between_m_by2_and_m = list(sympy.primerange(m//2+1,m))
        divisors_of_m=sympy.divisors(m,generator=False)
        divisors_of_m.remove(m)
        if m%2==0:
            divisors_of_m.remove(m//2)
        for p in primes_between_m_by2_and_m:
            sum+=p
        for p in primes_lessthan_m_by2:
            for d in divisors_of_m:
                if p< m//d and m%(d*p)!=0:
                    sum+=d*p
        if sum%m==0:
           A350878.append(m)
    print(A350878)
    

Extensions

a(16)-a(20) from Amiram Eldar, Jan 21 2022
a(21)-a(27) from David A. Corneth, Jan 21 2022