A350919 a(0) = 9, a(1) = 9, and a(n) = 3*a(n-1) - a(n-2) - 4 for n >= 2.
9, 9, 14, 29, 69, 174, 449, 1169, 3054, 7989, 20909, 54734, 143289, 375129, 982094, 2571149, 6731349, 17622894, 46137329, 120789089, 316229934, 827900709, 2167472189, 5674515854, 14856075369, 38893710249, 101825055374, 266581455869, 697919312229, 1827176480814, 4783610130209, 12523653909809, 32787351599214, 85838400887829, 224727851064269
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
Crossrefs
Programs
-
Mathematica
nxt[{a_,b_}]:={b,3b-a-4}; NestList[nxt,{9,9},40][[;;,1]] (* or *) LinearRecurrence[{4,-4,1},{9,9,14},40] (* Harvey P. Dale, Jul 19 2024 *)
Formula
a(n) = 5*A032908(n) - 1. - Hugo Pfoertner, Jan 22 2022
G.f.: (3 - 2*x)*(3 - 7*x)/((1 - x)*(1 - 3*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 5*A001519(n) +4. - R. J. Mathar, Feb 07 2022
Comments