cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350920 a(0) = 5, a(1) = 5, and a(n) = 4*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

5, 5, 11, 35, 125, 461, 1715, 6395, 23861, 89045, 332315, 1240211, 4628525, 17273885, 64467011, 240594155, 897909605, 3351044261, 12506267435, 46674025475, 174189834461, 650085312365, 2426151414995, 9054520347611, 33791929975445, 126113199554165, 470660868241211, 1756530273410675, 6555460225401485, 24465310628195261, 91305782287379555
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350921, A350922, A350923, A350924, A350925, A350926.

Formula

a(n) = 3*A001835(n) + 2. - Hugo Pfoertner, Jan 22 2022
G.f.: (5 - 20*x + 11*x^2)/((1 - x)*(1 - 4*x + x^2)). - Stefano Spezia, Jan 22 2022