A350932 Minimal determinant of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers, with a(0) = 1.
1, 2, -11, -286, -57935, -5696488, -1764195984, -521528189252
Offset: 0
Examples
a(2) = -11: 2 3 5 2 a(3) = -286: 5 7 2 11 5 7 3 11 5
Links
- Lucas A. Brown, A350932+3.py
- Mathematics Stack Exchange, Why is the determinant of the 0 x 0 matrix equal 1?
- Wikipedia, Toeplitz Matrix
Programs
-
Maple
f:= proc(n) local i; min(map(t -> LinearAlgebra:-Determinant(LinearAlgebra:-ToeplitzMatrix(t)), combinat:-permute([seq(ithprime(i),i=1..2*n-1)]))) end proc: f(0):= 1: map(f, [$0..5]); # Robert Israel, Apr 01 2024
-
Python
from itertools import permutations from sympy import Matrix, prime def A350932(n): return min(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,2*n))) # Chai Wah Wu, Jan 27 2022
Extensions
a(5) from Alois P. Heinz, Jan 25 2022
a(6)-a(7) from Lucas A. Brown, Aug 27 2022