cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A348891 Minimal absolute value of determinant of a nonsingular n X n symmetric Toeplitz matrix using the first n prime numbers.

Original entry on oeis.org

1, 2, 5, 12, 11, 22, 84, 1368, 73, 589, 15057, 2520, 28209
Offset: 0

Views

Author

N. J. A. Sloane and Stefano Spezia, Jan 28 2022

Keywords

Examples

			a(3) = 12:
    2    3    5
    3    2    3
    5    3    2
a(4) = 11:
    2    5    3    7
    5    2    5    3
    3    5    2    5
    7    3    5    2
a(5) = 22:
    2    3    5    7   11
    3    2    3    5    7
    5    3    2    3    5
    7    5    3    2    3
   11    7    5    3    2
		

Crossrefs

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A348891(n): return min(d for d in (abs(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det()) for p in permutations(prime(i) for i in range(1,n+1))) if d > 0) # Chai Wah Wu, Jan 28 2022

Extensions

a(9) from Alois P. Heinz, Jan 28 2022
a(10)-a(12) from Lucas A. Brown, Aug 31 2022

A350955 Minimal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers.

Original entry on oeis.org

1, 2, -5, -35, -435, -87986, -7186995, -496722800, -68316404507, -9102428703537, -3721326642272925, -488684390484513105, -195315251884652232704
Offset: 0

Views

Author

Stefano Spezia, Jan 27 2022

Keywords

Examples

			a(3) = -35:
   [3    5    2]
   [5    3    5]
   [2    5    3]
a(4) = -435:
   [5    7    2    3]
   [7    5    7    2]
   [2    7    5    7]
   [3    2    7    5]
a(5) = -87986:
   [ 2    3   11    5    7]
   [ 3    2    3   11    5]
   [11    3    2    3   11]
   [ 5   11    3    2    3]
   [ 7    5   11    3    2]
		

Crossrefs

Cf. A350932, A350956 (maximal), A348891.

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350955(n): return min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,n+1))) # Chai Wah Wu, Jan 27 2022

Extensions

a(9) from Alois P. Heinz, Jan 27 2022
a(10)-a(12) from Lucas A. Brown, Aug 29 2022

A350933 Maximal determinant of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 19, 1115, 86087, 9603283, 2307021183, 683793949387
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2022

Keywords

Comments

For n X n Hankel matrices the same maximal determinants appear.

Examples

			a(2) = 19:
    5    2
    3    5
a(3) = 1115:
   11    2    5
    7   11    2
    3    7   11
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[Table[Abs[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] (* Stefano Spezia, Feb 06 2024 *)
  • PARI
    a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = abs(matdet(matrix(n, n, i, j, prime(p[i+j-1])))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350933(n): return max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,2*n))) # Chai Wah Wu, Jan 27 2022
    

Extensions

a(5) from Alois P. Heinz, Jan 25 2022
a(6)-a(7) from Lucas A. Brown, Aug 27 2022

A350939 Minimal permanent of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 19, 496, 29609, 3009106, 498206489
Offset: 0

Views

Author

Stefano Spezia, Jan 26 2022

Keywords

Comments

For n X n Hankel matrices the same minimal permanents appear.

Examples

			a(2) = 19:
    2    3
    5    2
a(3) = 496:
    2    3    7
    5    2    3
   11    5    2
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Min[Table[Permanent[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] (* Stefano Spezia, Feb 06 2024 *)
  • PARI
    a(n) = my(v=[1..2*n-1], m=+oo, d); forperm(v, p, d = matpermanent(matrix(n, n, i, j, prime(p[i+j-1]))); if (dMichel Marcus, Feb 08 2024
  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350939(n): return 1 if n == 0 else min(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,2*n))) # Chai Wah Wu, Jan 27 2022
    

Extensions

a(5) from Alois P. Heinz, Jan 26 2022
a(6) from Lucas A. Brown, Sep 05 2022
Showing 1-4 of 4 results.