cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A350956 Maximal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers.

Original entry on oeis.org

1, 2, 5, 64, 1107, 160160, 5713367, 889747443, 62837596341, 11671262491586, 3090090680653053, 635672008069583520, 278356729040728193703
Offset: 0

Views

Author

Stefano Spezia, Jan 27 2022

Keywords

Examples

			a(3) = 64:
   [5    2    3]
   [2    5    2]
   [3    2    5]
a(4) = 1107:
   [3    2    7    5]
   [2    3    2    7]
   [7    2    3    2]
   [5    7    2    3]
a(5) = 160160:
   [ 5   11    2    3    7]
   [11    5   11    2    3]
   [ 2   11    5   11    2]
   [ 3    2   11    5   11]
   [ 7    3    2   11    5]
		

Crossrefs

Cf. A350933, A350955 (minimal).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350956(n): return max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,n+1))) # Chai Wah Wu, Jan 27 2022

Extensions

a(9) from Alois P. Heinz, Jan 27 2022
a(10)-a(12) from Lucas A. Brown, Aug 29 2022

A350940 Maximal permanent of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 31, 2364, 346018, 82285908, 39135296624
Offset: 0

Views

Author

Stefano Spezia, Jan 26 2022

Keywords

Comments

For n X n Hankel matrices the same maximal permanents appear.

Examples

			a(2) = 31:
    5    2
    3    5
a(3) = 2364:
   11    5    3
    7   11    5
    2    7   11
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[Table[Permanent[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] (* Stefano Spezia, Feb 06 2024 *)
  • PARI
    a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matpermanent(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350940(n): return 1 if n == 0 else max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,2*n))) # Chai Wah Wu, Jan 27 2022
    

Extensions

a(5) from Alois P. Heinz, Jan 26 2022
a(6) from Lucas A. Brown, Sep 05 2022

A350932 Minimal determinant of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers, with a(0) = 1.

Original entry on oeis.org

1, 2, -11, -286, -57935, -5696488, -1764195984, -521528189252
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2022

Keywords

Examples

			a(2) = -11:
    2    3
    5    2
a(3) = -286:
    5    7    2
   11    5    7
    3   11    5
		

Crossrefs

Cf. A318173, A350930, A350933 (maximal).

Programs

  • Maple
    f:= proc(n) local i;
      min(map(t -> LinearAlgebra:-Determinant(LinearAlgebra:-ToeplitzMatrix(t)), combinat:-permute([seq(ithprime(i),i=1..2*n-1)]))) end proc:
    f(0):= 1:
    map(f, [$0..5]); # Robert Israel, Apr 01 2024
  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350932(n): return min(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,2*n))) # Chai Wah Wu, Jan 27 2022

Extensions

a(5) from Alois P. Heinz, Jan 25 2022
a(6)-a(7) from Lucas A. Brown, Aug 27 2022

A351609 Maximal absolute value of the determinant of an n X n symmetric matrix using the integers 1 to n*(n + 1)/2.

Original entry on oeis.org

1, 1, 7, 152, 7113, 745285, 94974369
Offset: 0

Views

Author

Stefano Spezia, Feb 14 2022

Keywords

Comments

Upper bounds for the next terms can be found by considering all possibilities of choosing matrix entries on the diagonal and applying Gasper's determinant theorem (see references in A085000): a(7) <= 22475584128, a(8) <= 6634478203404, a(9) <= 2647044512044258. - Hugo Pfoertner, Feb 18 2022

Examples

			a(3) = 152:
   2    4    6
   4    5    1
   6    1    3
a(4) = 7113:
   2    6    8    9
   6    5   10    1
   8   10    3    4
   9    1    4    7
		

Crossrefs

Formula

a(n) = max(abs(A351147(n)), A351148(n)). - Hugo Pfoertner, Feb 16 2022

Extensions

a(5)-a(6) from Hugo Pfoertner, Feb 16 2022

A369946 a(n) is the minimal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, -19, -1115, -57935, -5696488, -2307021183
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Examples

			a(2) = -19:
  2, 5;
  5, 3.
a(3) = -1115:
   3,  7, 11;
   7, 11,  2;
  11,  2,  5.
a(4) = -57935:
   7,  5, 17,  2;
   5, 17,  2,  3;
  17,  2,  3, 11;
   2,  3, 11, 13.
		

Crossrefs

Cf. A369947 (maximal), A350933 (maximal absolute value), A369949, A350939 (minimal permanent).

Programs

  • Mathematica
    a[n_] := Min[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], m=+oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (dMichel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import primerange, prime, Matrix
    def A369946(n): return min(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024

A369947 a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 11, 286, 86087, 9603283, 1764195984
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Examples

			a(2) = 11:
  3, 2;
  2, 5.
a(3) = 286:
   3, 11, 5;
  11,  5, 7;
   5,  7, 2.
a(4) = 86087:
   7,  3, 13, 17;
   3, 13, 17,  2;
  13, 17,  2, 11;
  17,  2, 11,  5.
		

Crossrefs

Cf. A369946 (minimal), A350933 (maximal absolute value), A369949, A350940 (maximal permanent).

Programs

  • Mathematica
    a[n_] := Max[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import primerange, prime, Matrix
    def A369947(n): return max(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024

A369949 a(n) is the number of distinct values of the determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 1, 3, 59, 2459, 174063, 19141721
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := CountDistinct[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n],{Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], list=List()); forperm(v, p, listput(list, matdet(matrix(n, n, i, j, prime(p[i+j-1]))));); #Set(list); \\ Michel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import primerange, prime, Matrix
    def A369949(n): return len({Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))}) if n else 1 # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024
Showing 1-7 of 7 results.