cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A351022 Maximal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.

Original entry on oeis.org

1, 2, 13, 289, 13814, 1795898, 265709592, 70163924440, 20610999526800, 9097511018219760, 6845834489829830144
Offset: 0

Views

Author

Stefano Spezia, Jan 29 2022

Keywords

Examples

			a(3) = 289:
    3    5    2
    5    3    5
    2    5    3
a(4) = 13814:
    5    7    3    2
    7    5    7    3
    3    7    5    7
    2    3    7    5
a(5) = 1795898:
    5   11    7    3    2
   11    5   11    7    3
    7   11    5   11    7
    3    7   11    5   11
    2    3    7   11    5
		

Crossrefs

Cf. A350940, A350956, A351021 (minimal).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A351022(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,n+1))) # Chai Wah Wu, Jan 31 2022

Extensions

a(9) and a(10) from Lucas A. Brown, Sep 04 2022

A350939 Minimal permanent of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 19, 496, 29609, 3009106, 498206489
Offset: 0

Views

Author

Stefano Spezia, Jan 26 2022

Keywords

Comments

For n X n Hankel matrices the same minimal permanents appear.

Examples

			a(2) = 19:
    2    3
    5    2
a(3) = 496:
    2    3    7
    5    2    3
   11    5    2
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Min[Table[Permanent[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] (* Stefano Spezia, Feb 06 2024 *)
  • PARI
    a(n) = my(v=[1..2*n-1], m=+oo, d); forperm(v, p, d = matpermanent(matrix(n, n, i, j, prime(p[i+j-1]))); if (dMichel Marcus, Feb 08 2024
  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350939(n): return 1 if n == 0 else min(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,2*n))) # Chai Wah Wu, Jan 27 2022
    

Extensions

a(5) from Alois P. Heinz, Jan 26 2022
a(6) from Lucas A. Brown, Sep 05 2022

A369947 a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 11, 286, 86087, 9603283, 1764195984
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Examples

			a(2) = 11:
  3, 2;
  2, 5.
a(3) = 286:
   3, 11, 5;
  11,  5, 7;
   5,  7, 2.
a(4) = 86087:
   7,  3, 13, 17;
   3, 13, 17,  2;
  13, 17,  2, 11;
  17,  2, 11,  5.
		

Crossrefs

Cf. A369946 (minimal), A350933 (maximal absolute value), A369949, A350940 (maximal permanent).

Programs

  • Mathematica
    a[n_] := Max[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import primerange, prime, Matrix
    def A369947(n): return max(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024

A369952 a(n) is the number of distinct values of the permanent of an n X n Hankel matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 1, 2, 59, 2493, 180932, 19939272
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := CountDistinct[Table[Permanent[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], list=List()); forperm(v, p, listput(list, matpermanent(matrix(n, n, i, j, prime(p[i+j-1]))));); #Set(list); \\ Michel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import primerange, prime, Matrix
    def A369952(n): return len({Matrix([p[i:i+n] for i in range(n)]).per() for p in permutations(primerange(prime((n<<1)-1)+1))}) if n else 1 # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024

A351611 Maximal permanent of an n X n symmetric matrix using the integers 1 to n*(n + 1)/2.

Original entry on oeis.org

1, 1, 11, 420, 41451, 7985639, 2779152652
Offset: 0

Views

Author

Stefano Spezia, Feb 14 2022

Keywords

Examples

			a(3) = 420:
    1    5    6
    5    3    4
    6    4    2
a(4) = 41451:
    1    5    8   10
    5    4    9    7
    8    9    3    6
   10    7    6    2
		

Crossrefs

Extensions

a(5)-a(6) from Hugo Pfoertner, Feb 15 2022
Showing 1-5 of 5 results.