cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351167 Partial sums of A350682.

Original entry on oeis.org

1, 0, 0, -1, -1, -1, -2, -2, -2, -3, -3, -3, -4, -4, -3, -4, -4, -4, -4, -3, -3, -4, -4, -3, -4, -4, -4, -5, -5, -5, -6, -6, -6, -7, -7, -7, -8, -8, -7, -7, -7, -7, -8, -6, -6, -7, -7, -6, -7, -7, -7, -8, -8, -7, -5, -4, -4, -5, -4, -3, -4, -4, -3, -3, -2, -2, -3, -3, -3, -4, -4, -4, -5, -5, -4, -5, -4, -4, -4, -4, -4, -5, -5, -4, -5, -5, -5, -6, -6, -5, -5, -5, -5, -6, -6, -6, -7, -7, -7, -7
Offset: 1

Views

Author

Rohan Pandey, Harry Richman, Feb 03 2022

Keywords

Comments

Partial sums of Möbius values of triangular numbers under divisibility relation.

Crossrefs

Programs

  • Mathematica
    Accumulate@ With[{m = 100}, LinearSolve[Table[If[Mod[i (i + 1), j (j + 1)] == 0, 1, 0], {i, m}, {j, m}], UnitVector[m, 1]]] (* Michael De Vlieger, Feb 04 2022, after Harry Richman at A350682 *)
  • PARI
    lista(nn) = {my(v=vector(nn, k, k*(k+1)/2)); my(m=matrix(nn, nn, n, k, ! (v[n] % v[k]))); m = 1/m; my(w = vector(nn, k, m[k, 1])); vector(nn-1, k, sum(i=1, k, w[i]));} \\ Michel Marcus, Feb 16 2022
  • Python
    from sympy import *
    triangular_numbers = ([(x * (x + 1) // 2) for x in range(1, 101)])
    def Mobius_Matrix(lst):
        zeta_array = [[0 if n % m != 0 else 1 for n in lst] for m in lst]
        return Matrix(zeta_array) ** -1
    M = Mobius_Matrix(triangular_numbers)
    N = M[0, :].tolist()
    def sum_function(lst):
        sum_list = [sum(lst[:i+1]) for i in range(len(lst))]
        return sum_list
    S = sum_function(N[0])
    print(S)