cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351242 a(n) = n^3 * Sum_{p|n, p prime} 1/p^3.

Original entry on oeis.org

0, 1, 1, 8, 1, 35, 1, 64, 27, 133, 1, 280, 1, 351, 152, 512, 1, 945, 1, 1064, 370, 1339, 1, 2240, 125, 2205, 729, 2808, 1, 4591, 1, 4096, 1358, 4921, 468, 7560, 1, 6867, 2224, 8512, 1, 12221, 1, 10712, 4104, 12175, 1, 17920, 343, 16625, 4940, 17640, 1, 25515, 1456, 22464
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^3. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 35; a(6) = 6^3 * Sum_{p|6, p prime} 1/p^3 = 216 * (1/2^3 + 1/3^3) = 35.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), this sequence (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    a[n_]:= n^3 * Sum[1/p^3,{p,Select[Divisors[n],PrimeQ]}]; Array[a,56] (* Stefano Spezia, Jul 14 2025 *)
  • PARI
    a(n) = my(f = factor(n)); sum(i = 1, #f~, (n/f[i,1])^3) \\ David A. Corneth, Jul 14 2025

Formula

a(A000040(n)) = 1.
G.f.: Sum_{k>=1} x^prime(k) * (1 + 4*x^prime(k) + x^(2*prime(k))) / (1 - x^prime(k))^4. - Ilya Gutkovskiy, Feb 05 2022
Dirichlet g.f. = zeta(s-3)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^3/n^s) Sum_{p|n} 1/p^3. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^3*(p*j)^(s-3)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-3) = zeta(s-3)*primezeta(s). The result generalizes to higher powers of p in a(n). - Michael Shamos, Mar 01 2023
Sum_{k=1..n} a(k) ~ A085964 * n^4/4. - Vaclav Kotesovec, Mar 03 2023
a(n) = Sum_{d|n} A059376(d)*A001221(n/d). - Ridouane Oudra, Jul 14 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^3, where c = A010051.
a(p^k) = p^(3*k-3) for p prime and k>=1. (End)