A351242 a(n) = n^3 * Sum_{p|n, p prime} 1/p^3.
0, 1, 1, 8, 1, 35, 1, 64, 27, 133, 1, 280, 1, 351, 152, 512, 1, 945, 1, 1064, 370, 1339, 1, 2240, 125, 2205, 729, 2808, 1, 4591, 1, 4096, 1358, 4921, 468, 7560, 1, 6867, 2224, 8512, 1, 12221, 1, 10712, 4104, 12175, 1, 17920, 343, 16625, 4940, 17640, 1, 25515, 1456, 22464
Offset: 1
Examples
a(6) = 35; a(6) = 6^3 * Sum_{p|6, p prime} 1/p^3 = 216 * (1/2^3 + 1/3^3) = 35.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_]:= n^3 * Sum[1/p^3,{p,Select[Divisors[n],PrimeQ]}]; Array[a,56] (* Stefano Spezia, Jul 14 2025 *)
-
PARI
a(n) = my(f = factor(n)); sum(i = 1, #f~, (n/f[i,1])^3) \\ David A. Corneth, Jul 14 2025
Formula
a(A000040(n)) = 1.
G.f.: Sum_{k>=1} x^prime(k) * (1 + 4*x^prime(k) + x^(2*prime(k))) / (1 - x^prime(k))^4. - Ilya Gutkovskiy, Feb 05 2022
Dirichlet g.f. = zeta(s-3)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^3/n^s) Sum_{p|n} 1/p^3. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^3*(p*j)^(s-3)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-3) = zeta(s-3)*primezeta(s). The result generalizes to higher powers of p in a(n). - Michael Shamos, Mar 01 2023
Sum_{k=1..n} a(k) ~ A085964 * n^4/4. - Vaclav Kotesovec, Mar 03 2023
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^3, where c = A010051.
a(p^k) = p^(3*k-3) for p prime and k>=1. (End)
Comments