A351266 Sum of the cubes of the squarefree divisors of n.
1, 9, 28, 9, 126, 252, 344, 9, 28, 1134, 1332, 252, 2198, 3096, 3528, 9, 4914, 252, 6860, 1134, 9632, 11988, 12168, 252, 126, 19782, 28, 3096, 24390, 31752, 29792, 9, 37296, 44226, 43344, 252, 50654, 61740, 61544, 1134, 68922, 86688, 79508, 11988, 3528, 109512, 103824
Offset: 1
Examples
a(4) = 9; a(4) = Sum_{d|4} d^3 * mu(d)^2 = 1^3*1 + 2^3*1 + 4^3*0 = 9.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^3); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
-
PARI
a(n) = sumdiv(n, d, if (issquarefree(d), d^3)); \\ Michel Marcus, Feb 06 2022
Formula
a(n) = Sum_{d|n} d^3 * mu(d)^2.
a(n) = abs(A328640(n)).
G.f.: Sum_{k>=1} mu(k)^2 * k^3 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^3. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = zeta(4)/(4*zeta(2)) = Pi^2/60 = 0.164493... . - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2s-6). - Michael Shamos, Feb 09 2025
Comments