A351267 Sum of the 4th powers of the squarefree divisors of n.
1, 17, 82, 17, 626, 1394, 2402, 17, 82, 10642, 14642, 1394, 28562, 40834, 51332, 17, 83522, 1394, 130322, 10642, 196964, 248914, 279842, 1394, 626, 485554, 82, 40834, 707282, 872644, 923522, 17, 1200644, 1419874, 1503652, 1394, 1874162, 2215474, 2342084, 10642, 2825762, 3348388
Offset: 1
Examples
a(4) = 17; a(4) = Sum_{d|4} d^4 * mu(d)^2 = 1^4*1 + 2^4*1 + 4^4*0 = 17.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^4); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
-
PARI
a(n) = sumdiv(n, d, if (issquarefree(d), d^4)); \\ Michel Marcus, Feb 06 2022
Formula
a(n) = Sum_{d|n} d^4 * mu(d)^2.
G.f.: Sum_{k>=1} mu(k)^2 * k^4 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^4. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - Amiram Eldar, Nov 10 2022
Comments