cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351267 Sum of the 4th powers of the squarefree divisors of n.

Original entry on oeis.org

1, 17, 82, 17, 626, 1394, 2402, 17, 82, 10642, 14642, 1394, 28562, 40834, 51332, 17, 83522, 1394, 130322, 10642, 196964, 248914, 279842, 1394, 626, 485554, 82, 40834, 707282, 872644, 923522, 17, 1200644, 1419874, 1503652, 1394, 1874162, 2215474, 2342084, 10642, 2825762, 3348388
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^4 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(4) = 17; a(4) = Sum_{d|4} d^4 * mu(d)^2 = 1^4*1 + 2^4*1 + 4^4*0 = 17.
		

Crossrefs

Cf. A008683 (mu), A013661, A013663.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), this sequence (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^4); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d), d^4)); \\ Michel Marcus, Feb 06 2022

Formula

a(n) = Sum_{d|n} d^4 * mu(d)^2.
G.f.: Sum_{k>=1} mu(k)^2 * k^4 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^4. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - Amiram Eldar, Nov 10 2022