A351272 Sum of the 9th powers of the squarefree divisors of n.
1, 513, 19684, 513, 1953126, 10097892, 40353608, 513, 19684, 1001953638, 2357947692, 10097892, 10604499374, 20701400904, 38445332184, 513, 118587876498, 10097892, 322687697780, 1001953638, 794320419872, 1209627165996, 1801152661464, 10097892, 1953126, 5440108178862
Offset: 1
Examples
a(4) = 513; a(4) = Sum_{d|4} d^9 * mu(d)^2 = 1^9*1 + 2^9*1 + 4^9*0 = 513.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^9); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *) Table[Total[Select[Divisors[n],SquareFreeQ]^9],{n,30}] (* Harvey P. Dale, Feb 21 2023 *)
Formula
a(n) = Sum_{d|n} d^9 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^9. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^9 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/(10*zeta(2)) = Pi^8/155925 = 0.0608531... . - Amiram Eldar, Nov 10 2022
Comments