A351273 Sum of the 10th powers of the squarefree divisors of n.
1, 1025, 59050, 1025, 9765626, 60526250, 282475250, 1025, 59050, 10009766650, 25937424602, 60526250, 137858491850, 289537131250, 576660215300, 1025, 2015993900450, 60526250, 6131066257802, 10009766650, 16680163512500, 26585860217050, 41426511213650, 60526250
Offset: 1
Examples
a(4) = 1025; a(4) = Sum_{d|4} d^10 * mu(d)^2 = 1^10*1 + 2^10*1 + 4^10*0 = 1025.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^10); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *) Table[Total[Select[Divisors[n],SquareFreeQ]^10],{n,25}] (* Harvey P. Dale, Nov 20 2022 *)
Formula
a(n) = Sum_{d|n} d^10 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^10. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^10 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/(11*zeta(2)) = 0.0552934... . - Amiram Eldar, Nov 10 2022
Comments