cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351308 Sum of the cubes of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 65, 1, 1, 1, 65, 730, 1, 1, 65, 1, 1, 1, 4161, 1, 730, 1, 65, 1, 1, 1, 65, 15626, 1, 730, 65, 1, 1, 1, 4161, 1, 1, 1, 47450, 1, 1, 1, 65, 1, 1, 1, 65, 730, 1, 1, 4161, 117650, 15626, 1, 65, 1, 730, 1, 65, 1, 1, 1, 65, 1, 1, 730, 266305, 1, 1, 1, 65, 1, 1, 1, 47450, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Inverse Möbius transform of n^3 * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 20 2024

Examples

			a(16) = 4161; a(16) = Sum_{d^2|16} (d^2)^3 = (1^2)^3 + (2^2)^3 + (4^2)^3 = 4161.
		

Crossrefs

Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), this sequence (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
Cf. A010052, A261804 (zeta(7/2)), A008836, A001158.

Programs

  • Mathematica
    f[p_, e_] := (p^(6*(1 + Floor[e/2])) - 1)/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), d^3)); \\ Michel Marcus, Mar 24 2023

Formula

a(n) = Sum_{d^2|n} (d^2)^3.
Multiplicative with a(p) = (p^(6*(1+floor(e/2))) - 1)/(p^6 - 1). - Amiram Eldar, Feb 07 2022
From Amiram Eldar, Sep 19 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-6).
Sum_{k=1..n} a(k) ~ (zeta(7/2)/7) * n^(7/2). (End)
G.f.: Sum_{k>=1} k^6 * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Jun 05 2024
a(n) = Sum_{d|n} d^3 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 20 2024
a(n) = Sum_{d|n} lambda(d)*d^3*sigma_3(n/d), where lambda = A008836. - Ridouane Oudra, Jul 18 2025