A351314 Sum of the 8th powers of the square divisors of n.
1, 1, 1, 65537, 1, 1, 1, 65537, 43046722, 1, 1, 65537, 1, 1, 1, 4295032833, 1, 43046722, 1, 65537, 1, 1, 1, 65537, 152587890626, 1, 43046722, 65537, 1, 1, 1, 4295032833, 1, 1, 1, 2821153019714, 1, 1, 1, 65537, 1, 1, 1, 65537, 43046722, 1, 1, 4295032833, 33232930569602, 152587890626
Offset: 1
Examples
a(16) = 4295032833; a(16) = Sum_{d^2|16} (d^2)^8 = (1^2)^8 + (2^2)^8 + (4^2)^8 = 4295032833.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(16*(1 + Floor[e/2])) - 1)/(p^16 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *) Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^8],{n,80}] (* Harvey P. Dale, Feb 13 2022 *)
-
PARI
my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^16*x^k^2/(1-x^k^2))) \\ Seiichi Manyama, Feb 12 2022
Formula
a(n) = Sum_{d^2|n} (d^2)^8.
Multiplicative with a(p) = (p^(16*(1+floor(e/2))) - 1)/(p^16 - 1). - Amiram Eldar, Feb 07 2022
G.f.: Sum_{k>0} k^16*x^(k^2)/(1-x^(k^2)). - Seiichi Manyama, Feb 12 2022
From Amiram Eldar, Sep 20 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-16).
Sum_{k=1..n} a(k) ~ (zeta(17/2)/17) * n^(17/2). (End)
a(n) = Sum_{d|n} d^8 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 21 2024
a(n) = Sum_{d|n} lambda(d)*d^8*sigma_8(n/d), where lambda = A008836. - Ridouane Oudra, Jul 19 2025
Comments