A060637
Triangle T(n,k) (0 <= k <= n) giving number of tilings of the k-dimensional zonotope constructed from n vectors.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 6, 2, 1, 16, 24, 8, 2, 1, 32, 120, 62, 10, 2, 1, 64, 720, 908, 148, 12, 2, 1, 128, 5040, 24698, 7686, 338, 14, 2, 1, 256, 40320, 1232944
Offset: 0
Triangle T(n,k) begins:
1;
2, 1;
4, 2, 1;
8, 6, 2, 1;
16, 24, 8, 2, 1;
32, 120, 62, 10, 2, 1;
64, 720, 908, 148, 12, 2, 1;
128, 5040, 24698, 7686, 338, 14, 2, 1;
...
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
A060602
Number of tilings of the d-dimensional zonotope constructed from d+3 vectors.
Original entry on oeis.org
8, 24, 62, 148, 338, 752, 1646, 3564, 7658, 16360, 34790, 73700, 155618, 327648, 688094, 1441756, 3014618, 6291416, 13107158, 27262932, 56623058, 117440464, 243269582, 503316428, 1040187338, 2147483592, 4429184966
Offset: 0
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
For any Z(D,d), the number of codimension 0 tilings is always 1, with codimension 1 it is 2, with codimension 2 it is 2.D.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
-
LinearRecurrence[{6,-13,12,-4},{8,24,62,148},30] (* Harvey P. Dale, Oct 13 2023 *)
-
print([2**(n + 1)*(n + 7) - 2*n - 6 for n in range(100)])
A351384
Number of tilings of the d-dimensional zonotope constructed from d+5 vectors.
Original entry on oeis.org
32, 720, 24698, 1681104, 295118262, 183886016052
Offset: 0
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
Showing 1-3 of 3 results.
Comments