cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060637 Triangle T(n,k) (0 <= k <= n) giving number of tilings of the k-dimensional zonotope constructed from n vectors.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 6, 2, 1, 16, 24, 8, 2, 1, 32, 120, 62, 10, 2, 1, 64, 720, 908, 148, 12, 2, 1, 128, 5040, 24698, 7686, 338, 14, 2, 1, 256, 40320, 1232944
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2001

Keywords

Comments

The zonotope Z(n,k) is the projection of the n-dimensional hypercube onto the k-dimensional space and the tiles are the projections of the k-dimensional faces of the hypercube.
T(n,k) is also the number of signotopes on n elements of rank r=k+1. A signotope on n elements of rank r is a mapping X:{{1..n} choose r}->{+,-} such that for any r+1 indices I={i_0,...,i_r} with i_0 < i_1 < ... < i_r, the sequence X(I-i_0), X(I-i_1), ..., X(I-i_r) changes its sign at most once (see Felsner-Weil reference). - Manfred Scheucher, Feb 09 2022

Examples

			Triangle T(n,k) begins:
    1;
    2,    1;
    4,    2,     1;
    8,    6,     2,    1;
   16,   24,     8,    2,   1;
   32,  120,    62,   10,   2,  1;
   64,  720,   908,  148,  12,  2, 1;
  128, 5040, 24698, 7686, 338, 14, 2, 1;
  ...
		

References

  • A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
  • Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

Extensions

Edited by Manfred Scheucher, Mar 08 2022

A060602 Number of tilings of the d-dimensional zonotope constructed from d+3 vectors.

Original entry on oeis.org

8, 24, 62, 148, 338, 752, 1646, 3564, 7658, 16360, 34790, 73700, 155618, 327648, 688094, 1441756, 3014618, 6291416, 13107158, 27262932, 56623058, 117440464, 243269582, 503316428, 1040187338, 2147483592, 4429184966
Offset: 0

Views

Author

Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001

Keywords

Comments

The zonotope Z(D,d) is the projection of the D-dimensional hypercube onto the d-dimensional space and the tiles are the projections of the d-dimensional faces of the hypercube. Here the codimension, i.e., D-d, is constant = 3 and d >= 0.
Also the number of signotopes on r+2 elements of rank r. A signotope on n elements of rank r is a mapping X:{{1..n} choose r}->{+,-} such that for any r+1 indices I={i_0,...,i_r} with i_0 < i_1 < ... < i_r, the sequence X(I-i_0), X(I-i_1), ..., X(I-i_r) changes its sign at most once (see Felsner-Weil reference). - Manfred Scheucher, Feb 09 2022

Examples

			For any Z(D,d), the number of codimension 0 tilings is always 1, with codimension 1 it is 2, with codimension 2 it is 2.D.
		

References

  • A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
  • Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

Cf. A006245 (two-dimensional tilings), A060595-A060601. A diagonal of A060637. See also A351383 and A351384 for other diagonals.
Cf. A133546.

Programs

  • Mathematica
    LinearRecurrence[{6,-13,12,-4},{8,24,62,148},30] (* Harvey P. Dale, Oct 13 2023 *)
  • Python
    print([2**(n + 1)*(n + 7) - 2*n - 6 for n in range(100)])

Formula

Conjectures from Colin Barker, Feb 20 2013: (Start)
a(n) = 2*(-3+7*2^n+(-1+2^n)*n).
G.f.: -2*(4*x^3-11*x^2+12*x-4) / ((x-1)^2*(2*x-1)^2). (End)
The above conjectures are correct; see Proposition 7.1 in Ziegler's article. - Manfred Scheucher, Feb 09 2022
a(n) = 2 * A133546(n+2). - Alois P. Heinz, Feb 11 2022

Extensions

Edited by Manfred Scheucher, Mar 08 2022

A351384 Number of tilings of the d-dimensional zonotope constructed from d+5 vectors.

Original entry on oeis.org

32, 720, 24698, 1681104, 295118262, 183886016052
Offset: 0

Views

Author

Manfred Scheucher, Feb 09 2022

Keywords

Comments

The zonotope Z(D,d) is the projection of the D-dimensional hypercube onto the d-dimensional space and the tiles are the projections of the d-dimensional faces of the hypercube. Here the codimension, i.e., D-d, is constant = 5 and d >= 0.
Also the number of signotopes on r+4 elements of rank r. A signotope on n elements of rank r is a mapping X:{{1..n} choose r}->{+,-} such that for any r+1 indices I={i_0,...,i_r} with i_0 < i_1 < ... < i_r, the sequence X(I-i_0), X(I-i_1), ..., X(I-i_r) changes its sign at most once (see Felsner-Weil reference).

Crossrefs

A diagonal of A060637.
Cf. A006245 (two-dimensional tilings), A060595-A060601, A060602, A351383.
Showing 1-3 of 3 results.