cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A351442 a(n) = A003958(sigma(n)), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 1, 6, 2, 2, 1, 8, 12, 4, 2, 6, 6, 2, 2, 30, 4, 24, 4, 12, 1, 4, 2, 8, 30, 12, 4, 6, 8, 4, 1, 24, 2, 8, 2, 72, 18, 8, 6, 16, 12, 2, 10, 12, 24, 4, 2, 30, 36, 60, 4, 36, 8, 8, 4, 8, 4, 16, 8, 12, 30, 2, 12, 126, 12, 4, 16, 24, 2, 4, 4, 96, 36, 36, 30, 24, 2, 12, 4, 60, 100, 24, 12, 6, 8, 20, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Comments

Question: Are there more fixed points than 1, 2, 8, 128, 288, 720, 32768, 29719872, ..., 2147483648 ?

Crossrefs

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A351442(n) = A003958(sigma(n));

Formula

Multiplicative with a(p^e) = A003958(1 + p + ... + p^e).
a(n) = A003958(A000203(n)).
a(n) = A351444(n) - A322582(n) = A351445(n) + A003958(n).

A351445 a(n) = A003958(sigma(n)) - A003958(n), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

0, 1, -1, 5, -2, 0, -5, 7, 8, 0, -8, 4, -6, -4, -6, 29, -12, 20, -14, 8, -11, -6, -20, 6, 14, 0, -4, 0, -20, -4, -29, 23, -18, -8, -22, 68, -18, -10, -18, 12, -28, -10, -32, 2, 8, -18, -44, 28, 0, 44, -28, 24, -44, 0, -36, 2, -32, -12, -50, 4, -30, -28, -12, 125, -36, -16, -50, 8, -42, -20, -66, 92, -36, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Cf. A351446 (positions of zeros), A351443 (odd terms there).
Cf. also A348736.

Programs

Formula

a(n) = A351442(n) - A003958(n) = A351444(n) - n.

A351443 Odd numbers k for which A003958(sigma(k)) = A003958(k), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 49, 40905, 106353, 140211, 275301, 302697, 499041, 597213, 1094913, 1284417, 1578933, 2004345, 2266137, 2560653, 3247857, 3444201, 3738717, 4425921, 5014953, 5123817, 5211297, 5407641, 5505813, 5996673, 6193017, 6870339, 7174737, 8156457, 8941833, 9432693, 9825381, 9923553
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Comments

Odd numbers k for which A351442(k) = A003958(k), or equally, for which k = A351444(k) = A322582(k) + A351442(k).
The 13th term, 2004345, is one of the rare abundant numbers (A005101, A005231) in this sequence.

Crossrefs

Odd terms in A351446.
These terms doubled form a subsequence of A351447.

Programs

A386424 Numbers k such that sigma(k) has the same powerful part as k, where sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 5, 12, 13, 26, 29, 37, 41, 44, 56, 61, 73, 74, 76, 90, 101, 109, 113, 122, 137, 146, 153, 157, 172, 173, 181, 193, 218, 229, 236, 257, 268, 277, 281, 312, 313, 314, 317, 353, 362, 373, 386, 389, 397, 401, 409, 421, 433, 457, 458, 461, 509, 522, 524, 528, 541, 554, 560, 569, 601, 613, 617, 626, 641, 652, 653
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2025

Keywords

Comments

Conjecture 1: the initial 1 is the only square in this sequence, and a(2) = 2 is the only term that is twice a square.
Conjecture 2: A323653 is a subsequence (which would follow from conjecture 1 (c) given there).

Crossrefs

Subsequences: A323653 (conjectured), A351549, A386425 (odd composites), A386426 (nondeficient terms).
Cf. also A006872, A351446, A387158.

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[653],a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
  • PARI
    A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1))
    isA386424(n) = (A057521(sigma(n))==A057521(n));

Formula

{k | A057521(A000203(k)) = A057521(k)}, or equally, {k | A387156(k) = A003557(k)}.

A351444 a(n) = n - A003958(n) + A003958(sigma(n)), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 2, 9, 3, 6, 2, 15, 17, 10, 3, 16, 7, 10, 9, 45, 5, 38, 5, 28, 10, 16, 3, 30, 39, 26, 23, 28, 9, 26, 2, 55, 15, 26, 13, 104, 19, 28, 21, 52, 13, 32, 11, 46, 53, 28, 3, 76, 49, 94, 23, 76, 9, 54, 19, 58, 25, 46, 9, 64, 31, 34, 51, 189, 29, 50, 17, 76, 27, 50, 5, 164, 37, 74, 73, 82, 19, 66, 5, 136
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Cf. A351446 (fixed points), A351443 (odd terms there).

Programs

Formula

a(n) = A322582(n) + A351442(n) = n - A003958(n) + A003958(sigma(n)).
a(n) = n + A351445(n).

A351440 Numbers k for which A003958(sigma(k)) + A064989(sigma(k)) is equal to A003958(k) + A064989(k).

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 240408, 2178540, 6828720, 13042080, 23569920, 33550336, 42402048, 45532800, 142990848, 1379454720
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Subsequence of A351446.
Subsequences: A000396, A336702.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A064989(n) = { my(f = factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    isA351440(n) = { my(s=sigma(n)); ((A003958(s)+A064989(s)) == (A003958(n)+A064989(n))); };

A387158 Numbers k such that A173557(k) = A173557(sigma(k)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 6, 26, 28, 63, 74, 120, 122, 135, 146, 270, 314, 351, 386, 416, 496, 520, 554, 626, 672, 794, 842, 875, 891, 914, 999, 1080, 1082, 1226, 1232, 1322, 1346, 1404, 1466, 1480, 1514, 1638, 1647, 1750, 1754, 1782, 1859, 1971, 1994, 2186, 2306, 2402, 2426, 2440, 2474, 2642, 2762, 2906, 2920, 3242, 3314, 3506, 3718
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Comments

Numbers k for which A173557(k) == A387157(k).

Crossrefs

Subsequences: A000396, A387159 (odd terms).
Cf. also A006872, A351446, A386424.

Programs

  • Mathematica
    A387158Q[k_] := #[k] == #[DivisorSigma[1, k]] & [Times @@ (FactorInteger[#][[All, 1]] - 1) &];
    Select[Range[10000], A387158Q] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1,factor(n)[,1]));
    is_A387158(n) = (A173557(sigma(n))==A173557(n));

A353634 Nondeficient numbers k such that phi(k) = phi(sigma(k)) and A003958(k) = A003958(sigma(k)).

Original entry on oeis.org

234728, 280904, 461168, 463112, 604136, 742664, 909872, 996008, 1065896, 1191944, 1204424, 1224392, 1465256, 1527656, 1620008, 1757288, 1758536, 1956848, 1985672, 2081768, 2102984, 2358824, 2376296, 2405552, 2518568, 2543528, 2589704, 2670824, 2820584, 2899208, 2912936, 3014024, 3151304, 3196232, 3374696, 3432104
Offset: 1

Views

Author

Antti Karttunen, May 04 2022

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    isA353634(n) = { my(s=sigma(n)); if(s<(2*n),return(0)); ((eulerphi(s)==eulerphi(n)) && (A003958(s)==A003958(n))); };

A353635 Numbers k such that phi(k) = phi(sigma(k)) and A003958(k) = A003958(sigma(k)).

Original entry on oeis.org

1, 26, 74, 122, 146, 314, 386, 554, 626, 794, 842, 914, 1082, 1226, 1322, 1346, 1466, 1514, 1754, 1994, 2186, 2306, 2402, 2426, 2474, 2642, 2762, 2906, 3242, 3314, 3506, 3746, 3866, 3986, 4034, 4274, 4682, 4946, 5114, 5186, 5594, 5714, 5834, 6122, 6434, 6506, 6626, 7034, 7466, 8042, 8114, 8354, 8522, 8546, 8714, 8882
Offset: 1

Views

Author

Antti Karttunen, May 04 2022

Keywords

Comments

Question 1: Are there any odd terms after the initial 1?
Interestingly, most of the terms seem to belong to a set where the abundancy index (ratio sigma(n)/n) converges towards 3/2. But there are exceptions, see A353634 for example.

Crossrefs

Intersection of A006872 and A351446. A353634 lists the nondeficient terms.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    isA353635(n) = { my(s=sigma(n)); ((eulerphi(s)==eulerphi(n)) && (A003958(s)==A003958(n))); };
Showing 1-9 of 9 results.